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Abstract

Mobile network data has been proven to provide a rich source of information in
multiple statistical domains such as demography, tourism, urban planning, etc.
However, the incorporation of this data source to the routinely production of
official statistics is taking many efforts since a diversity of highly entangled issues
(access, methodology, IT tools, quality, skills) must be solved beforehand. To do
this, one-off studies with concrete data sets are not enough and a standard
statistical production process must be put in place. We propose a concrete
modular process structured into evolvable modules detaching the strongly
technological layer underlying this data source from the necessary statistical
analysis producing outputs of interest. This architecture follows the principles of
the so-called ESS Reference Methodological Framework for Mobile Network
Data. Each of these modules deals with a different aspect of this data source. We
apply hidden Markov models for the geolocation of mobile devices, use a
Bayesian approach on this model to disambiguate devices belonging to the same
individual, compute aggregate numbers of individuals detected by a
telecommunication network using probability theory, and model hierarchically the
integration of auxiliary information from the telco market and official data to
produce final estimates of the number of individuals across different territorial
regions in the target population. A first simple illustrative proposal has been
applied to synthetic data providing preliminary software tools and accuracy
indicators monitoring the performance of the process. Currently, this exercise has
been applied to the estimation of present population and origin-destination
matrices. We present an illustrative example of the execution of these production
modules comparing results with the simulated ground truth, thus assessing the
performance of each production module.

Keywords: Mobile Network Data; Production Framework; Official Statistics;
Statistical Production Process

1 Introduction
Mobile network data, i.e. digital data generated in a mobile telecommunication

network by the interaction between a mobile station (device) and a base transceiver

station (antenna) [1], constitutes a rich source of information for Social Science,

in general, and for Official Statistics, in particular. There already exist multiple

excellent examples of one-off applications [2–15] (see supplementary material for a

more comprehensive list of references), but the production of official statistics in Na-

tional Statistical Systems demands a fully-fledged production framework covering

different aspects such as access conditions, methodological and quality frameworks,

IT infrastructure (both hardware and software), statistical disclosure control, and

identification of relevant indicators for a diversity of statistical domains in National
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and International Statistical Plans, mostly included as part of legal regulations.

A number of illustrative case studies of mobile network data to the production of

official statistics can already be found in the literature [16–26]. Moreover, efforts are

under way to construct a production framework [27, 28] with some recent examples

of an end-to-end statistical production process [29]. The need for a process-oriented

production system instead of a product-oriented or even domain-oriented system is

well-known in Official Statistics, where important initiatives have been carried out

in the last decade to avoid so-called stove pipe models driving National Statistical

Offices (NSOs) to production in silos, models which reduce the cost-efficiency to the

point of endangering the future feasibility of the production of official statistics [30].

There exist two important issues which raise immediate rightful concerns when

using mobile network data for statistical purposes. These are (i) privacy and con-

fidentiality of network subscribers and (ii) access conditions to data by NSOs. We

shall not be dealing with these issues in the next sections, but we mention the

general principles for the context in which our proposed process is to be consid-

ered. Privacy and confidentiality of any statistical information collected, processed,

and disseminated by NSOs have been, are, and will be a priority for any kind of

data source. Traditional survey data is indeed identified personal data and concerns

about its protection are duly accounted for with a specific production phase known

as statistical disclosure control [31, 32]. All kind of survey and administrative data

about personal habits, causes of death, business revenues, VAT and personal taxes,

etc. are collected, processed, and aggregated and official statistics are disseminated

under a negligible risk of reidentification of statistical units, whatever their nature

is. Not only is this commitment present with new digital data sources in general

and mobile network data in particular, but is it also reinforced.

Regarding access, this is an intricately complex unsolved issue where many, many

facets need to be considered simultaneously. Currently, there exist concrete agree-

ments between some NSOs/research centres/universities and Mobile Network Op-

erators (MNOs) for research on limited data sets, but the conditions for routinely

production of official statistics are yet to be found. By and large, in our view, MNOs

will need to become an active part of the official statistical production process and

this brings novel challenges. We identify at least the following restrictions to be

jointly satisfied to arrive at a feasible solution. Firstly, security, confidentiality, and

privacy must be legally and technically assured during the whole process, involving

the approval by the national Data Protection Authorities. In this sense, we under-

line the traditional role of NSOs in collecting and processing sensitive information.

Currently, we consider that any kind of mobile network data processing must be

undertaken in the original information systems of MNOs. However, notice that fur-

ther research needs to be conducted. For example, there exists both theoretical and

empirical evidence [33, 34] that privacy is not preserved even after aggregating data

under certain conditions. Secondly, appropriate territorial and time breakdowns

for target indicators and aggregates for the social good, potentially to be included

in sectorial legal regulations, must be identified so that valuable information for

data-based policy making and decision taking can be produced and disseminated
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for free. Thus, the relevant role of statistical offices in society according to the

Fundamental Principles of Official Statistics [35] would be strengthened. Thirdly,

a new branch of economic activity is growing on the basis of digital data and data

analytics [36]. This is usually substantiated in the so-called monetization of data

generated by enterprises during their business activities. MNOs are not an excep-

tion and due to the technologically complex data ecosystem of telecommunication

networks, investments are needed (mobile network data for statistical purposes do

not exist, a preprocessing stage is needed). Thus, a trade-off between public and

private interests must be found. In this line of thoughts, as we have expressed

elsewhere [37], public-private partnerships arise as an optimal solution, in which

win-win agreements are indeed feasible. The present methodological proposal, be-

yond the statistical contents included hereafter, provides also an insight on aspects

to be taken into account when finding these agreements.

To our best knowledge, mobile network data can be used at least in three (com-

plementary) ways, namely (i) focusing on geolocation of network events to analyse

population counts, displacement patterns, and mobility-related phenomena in gen-

eral (see most references above), (ii) focusing on the type of applications generating

the Internet traffic from the devices [see e.g. 38], and (iii) investigating interactions

between devices to analyse different aspects of social networks [39]. In the following,

we shall focus only on the geolocation of network events.

We make a proposal for an end-to-end statistical process going from the raw

telco data generated at the mobile telecommunication networks to the final target

population count estimates. The proposal follows the principles of functional mod-

ularity adapted to statistical production [40] focusing on input and output data as

well as the throughput of each production step. The next sections describe each

of the functional modules of the statistical process. In section 2 we provide a de-

scription of the (synthetic) data used to illustrate the proposal. In section 3 we

describe the module to geolocate mobile devices. In section 4 we propose a method

to disambiguate devices carried by the same individual. In section 5 we include

general considerations to identify devices pertaining to the target population under

analysis. In section 6 we suggest a method to aggregate data from the device level

to the territorial unit level. In section 7 we propose to use hierarchical modelling

to infer population counts in the target population from the population counts in

the network, integrating at the same time auxiliary information. In section 8 we

integrate all modules in a production chain. Finally, in section 9 we close with some

conclusions and future prospects.

It is important to underline that the proposal is formulated with a priority on

modularity and evolvability so that continuous improvements can be introduced

adapting to concrete restrictions from actual production conditions. The statistical

methods illustrating each module are not intended to be closed and definitive, but

rather on the contrary to pave the way for more complex scenarios.
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2 Data description
Our strategy to build a production framework revolves around the use of synthetic

network event data. Our choice is motivated by the following reasons: (i) to have

actual ground truth figures allowing us to conduct a thorough performance as-

sessment of methods and parameters and a better understanding by comparison

between actual population counts and their estimates, (ii) to identify different con-

crete aspects of the problem by configuring different scenarios in order to propose

specific elements in the methodology to deal with them, (iii) to avoid the issue about

the access to real data (see above) and its consequences (lack of data, confidential-

ity and privacy risks, legal concerns,. . . ), and (iv) to provide a body of technical

knowledge to reach informed partnership agreements with MNOs (otherwise, how

do we know what to agree upon?). Real data cannot provide these conditions for

research.

In this line, we have developed a network event data simulator. The simulator is

a highly modular software [41] implementing agent-based simulating scenarios with

different elements configured by the user. The basic elements are:

• a geographical territory represented by a map;

• a population of individuals carrying 0, 1, or 2 mobile devices during their

displacement;

• a telecommunication network configuration in terms of a radiowave propaga-

tion model;

• a reference grid for analysis.

The simulator works essentially by using a radio wave propagation model to sim-

ulate the handover mechanism between the antennas and each mobile device during

the displacement of each individual. The connection mechanism is an extreme sim-

plification of the real world extracting the essential features for statistical analysis.

The core output data consists of a time sequence of antenna IDs and event codes

(connection, disconnection, etc.) for each device along the duration of the simu-

lation. Signalling data (i.e. passive data not depending on subscribers’ behaviour)

are simulated instead of Call Detail Records or any other active data generated by

individuals (call, SMS, Internet connections, . . . ).

For the time being, since our priority is the simulator as a whole, the different

elements implemented so far are kept as simple as possible. Firstly, regarding the

population of individuals, displacement patterns are basically a sequence of stays

(no movement) and random walks with/without a drift with two possible speeds

(namely, walk and car speeds). The drift, the speeds, and the shares of individuals

with 0, 1, and 2 devices are easily configured by the user. Only closed populations

can be simulated so far, i.e. individuals cannot abandon or enter into the territory

under analysis. Secondly, radiowave propagation models [42] are mathematical rep-

resentations of the electromagnetic interaction between mobile stations and base

transceiver stations in a telecommunication network which simplifies planning, con-

figuration, and management avoiding numerical solutions of Maxwell’s equations

with real world complex boundary conditions. We are using two very simple models

for the connection mechanism. For omnidirectional antennas:
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• We model the so-called Received Signal Strength (RSS) for a device at a

distance r from the antenna as

RSS(r) = 30 + 10 · log10(P )− 10 · γ · log10(r), (1)

where P stands for the antenna emission power (in Watts) and γ is the so-

called path loss exponent (or attenuation factor). Notice that RSS is provided

in dBm. Each device connects to the antenna producing the highest signal

strength in each tile until the antenna reaches its maximum capacity. Both

the emission power and the path loss are selected as input parameters by the

user.

• In agreement with Tennekes et al. [29], we further model a so-called Signal

Dominance Measure (SDM) by making a logistic transformation on the RSS:

SDM(r) =
1

1 + exp (−Ssteep · (RSS(r)− Smid))
, (2)

where Ssteep and Smid are chosen according to characteristics of each radio cell.

Each device connects to the antenna providing the highest signal dominance

measure in each tile until the antenna reaches its maximum capacity. Both

Ssteep and Smid are selected as input parameters by the user, too.

In both cases, minimal thresholds for both RSS and SDM are selected by the user

below which no connection is possible. Coverage areas are indeed computed in this

simple way.

For directional antennas, more parameters are needed (see [29]). For simplicity,

we shall use only omnidirectional antennas in this work.

For the next sections to illustrate our proposed production model, we have con-

figured a scenario over an irregular polygon with a bounding box of 10 km×10 km,

across which N = 500 individuals move according to a sequence of stays and random

walks with a drift, 186 of them carrying at least one device (32 of them carrying

two devices). We have configured 70 omnidirectional antennas. See figures 1 and 2.

Parameters are further specified in the supplementary material.

3 Geolocation of mobile devices
3.1 Model specification and construction

The ultimate goal of the proposed set of modules is to provide common production

steps valid for any statistical domain detaching the highly technological substra-

tum of this data source from the statistical analysis producing different outputs and

insights. This first module focuses on the geolocation information in the telecommu-

nication network about mobile devices. There already exist multiple techniques to

geolocate a mobile station in a radio telecommunication network [43–49], but they

focus on providing a high-quality telecommunication service. Instead, we focus on

statistical purposes and many of these computationally demanding techniques are
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not necessary. Our design is based on the following premises. First, following [28], the

design should be as much modular as possible so that the geolocation information

for statistical analyses is not directly affected by changes in the telecommunica-

tion technology. At the same time, the design should allow the module to evolve

according to this technology. Second, we shall use data generated in the network

and shall not access data generated in the mobile devices. Indeed, we shall use only

the minimal set of information needed for the production of official statistics. Much

research is needed to agree on this minimal data set depending on case studies and

simulation exercises. Basically, we focus on the digital trace left by mobile devices

in the network and not on applications actively generating data for this purpose.

Third, quality is a concern of first priority in the production of official statistics.

In this sense, we shall account for the uncertainty underlying the whole produc-

tion process so that estimates will be produced together with accuracy indicators.

Fourth, the design of modules should allow us to integrate multiple data sources such

as information from the telco market (penetration rates, market shares, etc.) and

from Official Statistics (register-based residential population figures, land use, etc.).

Let us illustrate these premises with a concrete example. Let us think of the

evolution from 3G technology to 4G technology. The modularity will be introduced

by using a reference grid dividing the geographical territory of analysis into tiles

and providing the probability for each device to be geolocated at each tile. Data

abstraction is implemented just through the statistical model providing these lo-

cation probabilities: we get location probabilities independently of the underlying

technology. Indeed, when this technology evolves (from 3G to 4G), the statistical

model computing the probabilities may be made more sophisticated including more

variables or more accurate data, but at the end we still have location probabilities.

Available data can be just the radio cell IDs of each connection or can be completed

using other variables such as Timing Advance, Angle of Arrival, etc. Furthermore,

we can naturally account for uncertainty in the geolocation information since we

have probability distributions. Indeed, the use of probability models will allow us

to integrate in a natural way information from auxiliary data sources.

Now, we formalise our approach. We begin by introducing the input data. We shall

denote by Ed(t) the set of network event variables regarding mobile device d at time

instant t. These may be the radio cell ID, the Timing Advance (TA), the Angle of

Arrival (AoA), . . . or any network variable reflecting the digital trace of mobile

device d at time t. Notice that these are telco variables which will certainly evolve

and change according to the telecommunication technology. Also, notice that these

contain sensitive information about each device (hence individual) and thus must

not leave the information systems of MNOs (in-situ processing). NSOs do not need

access to these variables, only to the design of their processing. Next, we shall denote

by θnet the parameters for the radiowave propagation model such as the emission

power, the path loss exponent, etc. (see models (1) and (2) above). Although these

parameters do not contain sensitive information about the subscribers, they reveal

important technological information in the competitive telecommunication market.

NSOs do not need access to these variables either, but the models must be jointly
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agreed with MNOs. Finally, we shall denote by Iaux any auxiliary information about

the geographical territory such as the land use or transport networks or any other

external data source such as a population register. This information is indeed public,

but it may also incorporate data at the micro level produced (and not disseminated)

by NSOs.

The displacement of devices across the geographical territory bears an evident

dynamical ingredient in which we have access to a set of observed variables (network

variables Ed(t)) and a set of unobserved variables (location at each tile i, which we

shall denote by Tdt = i, i = 1, . . . , NT ). A natural mathematical description of this

situation can be provided using hidden Markov models (HMMs) [50, 51], in which

we model the time sequence of hidden (unobserved) variables Sdt for each device

d at each time instant t and a time sequence of observed variables Odt, which in

our case will be the network variables Odt = Edt. For simplicity, we shall assume

that the state variables Sdt reduce to the tile location Tdt (see left panel of figure

3). Now, we need two models:

• A transition model, providing details about the evolution (displacement) of

the devices:

P
(
Tdt = j

∣∣Tdt−1 = i, Iaux
)
≡ aij . (3)

• An emission model, providing details about the generation of network vari-

ables:

P
(
Edt = Ek

∣∣Tdt = i, Iaux
)
≡ bi(Ek) (4)

For the transition model we make a fairly generic proposal not imposing a dis-

placement pattern on the devices. We propose to choose the time regime in such a

way as to have a one-tile-long displacement at most at each time instant t. Transi-

tion probabilities θ1 and θ2 between tiles are estimated maximising the likelihood

for each device d (see right panel of figure 3).

To detach the technological and statistical layers we propose to substantiate the

emission model (4) as a radio wave propagation model independent of the transition

model so that bi(Ek) is computed in terms of models (1) or (2) taking the centre

of the tile as the reference point for the distance r. Notice that the emission model

involves the network configuration parameters θnet (emission power, path loss ex-

ponent, Smid, Ssteep in our simple case). Notice diverse relevant points. Firstly,

should we have richer raw telco data to consider more complex radio propagation

models, we could immediately improve the accuracy with a more sophisticated

computation of the emission probabilities. In case of lacking data for these models,

we could resort to geometrical considerations as with the Voronoi tessellation. The

ideal recommendation is to work together with MNOs to identify the more feasible

data set for the computation of these likelihoods. Ultimately, this will also depend

on the chosen final accuracy in our estimates. Secondly, a cautious reader may

rapidly suggest that the emission probabilities can also be modelled in terms of

unknown parameters to be estimated later on. In theory, this is always possible as
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in many other applications of HMMs. However, in our case we suggest to deal with

the emission probabilities independently as a separate (sub)module in the whole

process allowing us to detach the more technological stages directly dependent on

raw telco data from the more statistical upper layers involving population count

estimation. In this way, the joint work by MNOs and NSIs around the sensitive

telco data is focused on this step paving the way for the functional modularity of

the statistical process thus providing a concrete proposal for the implementation of

the ESS RMF. Thirdly, the computational cost of the emission probabilities is fixed

in time. If NA denotes the number of antennas in the geographical territory under

analysis and the grid size is NT , at most we need to compute NT × NA emission

probabilities to conform the matrix B = [bik], i = 1, . . . , NT , k = 1, . . . , NA. This

is done once and for all t (assuming time homogeneity). Fourthly, notice that hav-

ing the numerical values of the emission probabilities will allow us to simplify the

computation of the likelihood for the HMMs reducing its parameter dependency

only to the transition model. Finally, if missing values are to be used according

to the time padding procedure described in the supplementary material (which

guarantees the maximum one-tile distance restriction), for numerical convenience

later on the corresponding emission probabilities can be conveniently set to 1, i.e.

bi0 = P
(
Etn = ·

∣∣Ttn = i, Iaux
)

= 1. This will greatly facilitate the expression of the

HMM likelihood and its further optimization. Remind that this probability is not

real and completely meaningless.

Lastly, the initial state (prior) distribution πi ≡ P
(
Td0 = i

∣∣Iaux
)

is provided by

the statistician. Currently, we consider either a noninformative uniform distribution

(πi ∝ 1) or a so-called network distribution (based on the network configuration,

e.g. πi ∝ RSSi).

Once a model is fitted for each device, we can use the forward-backward algorithm

[51] to compute the (posterior) location probabilities γdti ≡ P
(
Tdt = i

∣∣Ed1:T , I
aux
)
,

i.e. the location probability at each tile i and each time instant t condi-

tional on all the network and event information available for device d (see fig-

ure 4). Also, we compute the (posterior) joint location probabilities γdt,ij ≡
P
(
Tdt = i, Tdt−1 = j

∣∣Ed1:T , I
aux
)
. These probabilities γdti and γdt,ij constitute the

output data for this module. Mathematical details of the whole model construction

are included in the supplementary material.

3.2 Model evaluation

To evaluate the performance of these geolocation models we shall mimick the usual

approach in Official Statistics to focus on the mean squared error as the most

relevant figure of merit for accuracy, concentrating on their bias and variance com-

ponents. In this line of thought, we shall introduce the following definitions:

1 The center of location probability cpdt of device d at time t defined as

cpdt =

NT∑
i=1

γdti

(
x

(c)
i

y
(c)
i

)
, (5)
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where x
(c)
i , y

(c)
i stand for the x and y coordinates of the centroid of tile i. This

can be understood as an estimation of the position of the device according

to the posterior mean. Notice that this quantity plays a similar role to a

first-order spatial moment for the distribution γdti. Then, we can view the

Euclidean distance between the true position r∗dt and the center of location

probability cpdt of a device d at time t as a bias-equivalent indicator of the

geolocation estimation procedure:

bdt = ‖cpdt − r∗dt‖. (6)

2 The radius of location probability dispersion rddt of device d at time t with

respect to position r∗dt = (x∗dt y
∗
dt)

T defined as

rddt(r
∗
dt) =

√√√√NT∑
i=1

γdti

[
(x

(c)
i − x∗dt)2 + (y

(c)
i − y∗dt)2

]
. (7)

where (x∗dt, y
∗
dt) stands for the reference x and y coordinates of the device d

at time t. This can be understood as a root mean squared dispersion with

respect to a reference position. Notice that this quantity plays a similar role

to a standard spatial deviation for the distribution γdti when the reference

position is taken as the center of location probability:

rmsddt = rddt(cp,dt). (8)

Notice that we can also generalize these definitions by using alternative distance

functions instead of the Euclidean distance such as the Manhattan distance or sim-

ilar. Obviously, these figures of merit are not exhaustive and we can propose more

(e.g. to measure the kurtosis, concentration, etc.). Having the set of probability

distributions γdti and the true position values many choices arise.

In figures 5 and 6 we represent the distributions of bdt and rmsddt for the pop-

ulation of devices in our simulated scenario. The advantage of using a simulator

providing a ground truth is that we may draw relevant conclusions. Firstly, the

RSS model seems to provide more accurate estimates in terms of the distance to

the true position of the devices, but the SDM with the uniform prior provides less

disperse spatial distributions. Since the connection type (see table 1 in the sup-

plementary material) is strength, i.e. the handover mechanism follows the RSS

model, the emission model is trivially closer to this true handover mechanism, pro-

viding best geolocation estimates. Furthermore, according to figure 1, the SDM

model is more localized (this is the effect of the logistic transformation), thus the

root mean squared dispersion is lower. Secondly, the radiowave propagation model

plays a central role in the emission model and thus in the geolocation procedure.

This underlies the importance of the joint MNO-NSO collaboration in the design
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stage. The RSS model is too simplistic for real life conditions (e.g. due to the load

balancing of the network) and the SDM model needs an accurate estimation of the

parameters Smid and Ssteep. Thirdly, the use of a dynamical approach with an HMM

allows us to compute location probabilities even for those time instants in which

no network event is recorded. Lastly, there exist time instants where an antenna

oscillation phenomenon is detected because the mobile device moves in the frontier

of two neighboring coverage areas. In the HMM approach, contrary to intuition,

this leads to an accurate geolocation estimate since we are having more information

(from two antennas) than otherwise. Thus, with the dynamical approach we gain

in accuracy.

4 Device duplicity
The target populations of statistical analyses of network mobile data are popu-

lations of human individuals (present population, domestic tourists, commuters,

etc.). It is well-known that a non-negligible fraction of mobile subscribers carries

more than one device. We shall call this device multiplicity. The goal of this module

will be to compute a device-multiplicity probability p
(n)
d for each mobile device d,

i.e. the probability that a device d is carried by an individual carrying n devices.

The input data for this module will be the same input data as for the geolocation

module, since we will make use of the same HMM.

4.1 Computation of multiplicity probabilities

For illustrative purposes we shall make the working assumption that an individual

carries at most two devices. The generalization to more devices is just a matter

of computational complexity of this same approach. We shall follow a Bayesian

hypothesis testing approach. For each device d we shall consider the disjoint set of

hypotheses {Hdd′}d′=1,...,D meaning that the devices d and d′ are carried by the

same individual. When d = d′ this reduces to mobile device d being the only mobile

device carried by its corresponding individual. We focus on computing

p
(1)
d = P

(
Hdd

∣∣Ed1:T , I
aux
)
, (9)

where we are using the same notation as in section 3. Since the entire event set Ωd

for device d can be decomposed as Ωd =
⋃D
d′=1Hdd′ , we can make use of Bayes’

theorem to write:

p
(1)
d =

P
(
Ed1:T

∣∣Hdd, I
aux
)
· P
(
Hdd

∣∣Iaux
)

P
(
Ed1:T

∣∣Hdd, Iaux
)
· P
(
Hdd

∣∣Iaux
)

+
∑
d′ 6=d P

(
Ed1:T ,Ed′1:T

∣∣Hdd′ , Iaux
)
· P
(
Hdd′

∣∣Iaux
) .

=
1

1 +
∑
d′ 6=d αdd′ · exp (`dd′ − `d)

, (10)

where we have defined the prior probability ratios αdd′ =
P
(
Hdd′

∣∣Iaux
)

P
(
Hdd

∣∣Iaux
) and the

integrated log-likelihoods `d = P
(
Ed1:T

∣∣Hdd, I
aux
)

for a single device d and
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`dd′ = P
(
Ed1:T ,Ed′1:T

∣∣Hdd′ , I
aux
)

for two devices d and d′. These quantities are

computed as follows. Firstly, the integrated log-likelihood `d for a single device

d corresponds to the HMM model introduced above. Secondly, the integrated log-

likelihood `dd′ for two devices d and d′ is computed according to the HMM duplicity

model represented by the graphical model in figure 7. Computation is conducted in

a similar way as before with the noticeable difference in the emission model: emis-

sion probabilities are computed as the product of the original single-device emission

probabilities for d and d′ (see supplementary material for details).

For the specification of priors we reason as follows. The key ingredient is the auxil-

iary information Iaux. For example, if some auxiliary information at the device level

is available (for instance from the Customer Relationship Management database)

showing that devices d and any other d′ reside in far away locations, then naturally

P (Hdd′ |Iaux) ≈ 0 so that p
(1)
d ≈ 1, as expected.

If no individual prior information is used, we can reason as follows. Firstly, let

λd denote the prior odds ratio λd = P(Hdd|Iaux)
1−P(Hdd|Iaux) , which expresses how much more

probable is that an individual carries a priori only one device d than another device

together with d. This quantity may be fixed using auxiliary information from an

external source (e.g. the CRM database or an external survey). Secondly, since no

auxiliary information is used, a priori any other device d′ can be the second device,

so that P (Hdd′ |Iaux) is constant for any other device d′ 6= d. Since Ωd =
⋃ND
d′=1Hdd′ ,

then P (Hdd|Iaux) + (ND − 1) · P (Hdd′ |Iaux) = 1 for any other device d′. We arrive

at

P (Hdd|Iaux) =
λd

1 + λd
,

P (Hdd′ |Iaux) =
1

(1 + λd) · (ND − 1)
,

αdd′ =
1

λd · (Nd − 1)
,

p
(1)
d =

1

1 + exp(−`d)
λd·(Nd−1)

∑
d′ 6=d exp(`dd′)

. (11)

A natural choice for λd when there are more devices ND than individuals Nnet in

the network is given by

λd =
1− 2×(ND−Nnet,ext)

(ND2 )
2×(ND−Nnet,ext)

(ND2 )

,

where Nnet,ext is an estimate of Nnet from an external source (CRM database, etc.).

If an external estimate r̂2 of the fraction of individuals r2 in the network carrying

two devices is available, then we can choose

λd =
1− r̂2

r̂2
.
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If we can provide local estimates (because devices are assigned to delimited regions),

then we do not need to consider the whole set of mobile devices and we can set

λd =
N loc
D

ND
λloc
d ,

where the same reasoning as above applies to λloc
d at a local scale.

4.2 Results on simulated data

We have applied this approach to our simulated data set with N = 500 individ-

uals in the target population, Nnet = 186 individuals detected by the network

(subscribers), and ND = 218 mobile devices. Obviously, there exist individuals

carrying two devices. We apply the formalism above to provide duplicity proba-

bilities p
(2)
d = 1 − p(1)

d for each device d. We set the value λ
(1)
d = 0.85

0.15 assuming

faithful external information (the result is robust enough around this value – see

supplementary material for details). The duplicity probabilities are computed in

four scenarios combining two different emission models (RSS and SDM) with two

different prior location probabilities (uniform and network). We compare the results

with the (synthetic) ground truth to assess the performance. In figure 8 we repre-

sent the ROC curves for the duplicity probabilities for the four models, together

with their corresponding area under the curve (AUC). In figure 9 we represent the

different cases (true/false positive/negative) in each model.

Taking into account that the handover mechanism in this simulation is based on

the RSS and that the initial true positions are chosen at random by the simulator

(not based on the network configuration), we conclude that the larger the mismatch

between the handover mechanism (the reality) and the emission model (the chosen

model), the poorer the performance of the classification of devices, as one may

expect. The SDM choice for the emission model departs from the actual handover

mechanism and we observe in figure 9 that duplicity probabilities show lower qual-

ity. This is also observed with the priors in the same figure: the uniform choice is

more appropriate to this simulated scenario than the network choice. This shows

the importance of the collaboration between MNOs and NSIs in incorporating the

network configuration into the emission model and the choice of location priors

using as much auxiliary information as possible.

For these results we also observe that false negative cases are generated by those

pairs of devices having exactly the same pairwise degenerate sequence of network

events in which only one antenna connects to each pair of devices. The algorithm

fails to detect them as devices carried by the same individual. This is explained by

the HMM itself, since the transition matrix is the diagonal matrix and no transition

is indeed allowed. In this case the duplicity is much less probable than the single

device per individual. A complementary test is needed when a connection to only

one antenna is detected, which in turn will be less probable as the time period of

analysis is longer.
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For the case of false positive cases, we observe that these arise from quasi-identical

sequences of network events, which is an expected behaviour. With longer time

periods of observation, these cases will presumably come to be negligible.

5 Statistical filtering
This module is devoted to the identification of the target population in the mo-

bile network data set and derived data sets (posterior location probabilities, for

example). In practical terms this amounts to identifying domestic tourists, inbound

tourists, commuters, etc. in our data sets. We refer to this as statistical filtering,

where we use the term statistical to distinguish this filtering exercise from the pre-

processing steps in which, e.g., machine-to-machine data are previously filtered out.

Notice that the latter rests mostly on technological issues and definitions, whereas

the former is a clearly statistical analytical exercise.

As in the whole approach proposed in this work, we shall be focusing on geolo-

cation data, i.e., on movement data discarding interaction information (e.g. calls

among subscribers) or Internet traffic (e.g. usage of mobile apps). In a fully-fledged

production environment in real conditions, the ideal scenario would be to use as

much information as possible. Thus, we shall concentrate on analyses upon the ge-

olocation data, i.e. upon the network event data and location probabilities derived

thereof.

Regretfully, given the problems in accessing real mobile network data, and the

current status of development of the network event data simulator, the contents of

this module are not so far developed as the preceding ones. The current displace-

ment patterns for individuals (hence also for mobile devices) in the data simulator

are restricted to random walks and random walks with drift, both with intermixing

periods of stops (stays, i.e. no displacement at all) for the whole population. In this

sense, we lack synthetic data to test concrete proposals, not as with the geolocation

of data. We would need more complex and realistic individual displacement pat-

terns and elements (Lévy flights, home/work locations, usual environments, etc.).

For this reason, we will limit ourselves to provide more generic guidelines to be

implemented in the future both on real data and on synthetic data after a further

development of the network event data simulator.

5.1 General approach

Our proposed approach for the statistical filtering of target populations is strongly

based on the geolocation outputs obtained from the preceding process modules.

Different aspects are to be taken into account. As before, the target mobile network

data is assumed to be basically some form of signalling data so that time frequency

and spatial resolution are high enough as to allow us to analyse movement data in

a meaningful way. In this sense, for example, CDR data only provides up to a few

records per user in an arbitrary day which makes virtually impossible any rigorous

data-based reasoning in this line. Next, the use of hidden Markov models, as de-

scribed in section 3, implicitly incorporates a time interpolation which will be very
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valuable for this statistical filtering exercise. In this way we avoid the issues arising

from noncontinuous traces approaches [see e.g. 52, for home location algorithms].

However, a wider analysis is needed to find the optimal time scope. The spatial

resolution issue is dealt with by using the reference grid introduced in section 3.

This releases the analyst from spatial techniques such as Voronoi tessellation, which

introduces too much noise for our purposes. Nonetheless, the uncertainty measures

computed from the underlying probabilistic approach for geolocation must be taken

into account to deal with precision issues in different regions (e.g. high-density pop-

ulated vs. low-density populated). The algorithms to be developed to statistically

filter the target population will be mainly based on quantitative measures of move-

ment data. In particular, from the HMMs fitted to the data (especially the location

probabilities) we shall derive a probability-based trajectory per device which will

be the basis for these algorithms.

Once a trajectory is assigned to each device, different indicators and measures of

movement shall be computed upon which we shall apply algorithms to determine

usual environment, home/work location, second home location, leisure activity times

and locations, etc. A problematic aspect with this new data source is that tradi-

tional statistical definitions will need some revision or refinement. For example, in

the home detection problem, which is an intermediate problem in the identifica-

tion of target populations, census data (or similar official data) are commonly used

to calibrate or validate estimates. The notion of home obtained from traditional

sources is mainly an administrative concept arising from the use of administrative

registers. In this way, e.g., a University student may be registered in her family home

whereas she spends nine months in a college. What definition of home should then

be used? This has introduced subtleties like the distinction between residential and

present population in official statistics. In this line of thought, an important input

for target population identification algorithms is the establishment of a clear-cut

definition for each statistical concept involved, so that the algorithms are designed

to cover these definitions. A critical issue in the development of this kind of al-

gorithms is the validation procedure. On the one hand, the use of the simulator,

once more complex and realistic displacement patterns have been introduced, will

offer us in the future a validation against the simulated ground truth. On the other

hand, with real data two main problems need to be tackled, namely (i) the use

of pseudoanonymised real data will prevent us to link mobile device records with

official registers, so only indirect aggregated validation procedures can be envisaged

(thus inviting the ecological fallacy to permeate the whole analysis), and (ii) the

representativity of the tested sample of devices to validate the algorithm for the

whole population needs to be rigorously assessed.

In the next subsection we will provide a generic view of quantitative measures

of movement data, together with some concrete illustrative examples, upon the

probability-based trajectories assigned to the geolocated data (location probabili-

ties) obtained from the application of an HMM. Thus, the starting point will be

the construction of this probability-based trajectory for each device.
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5.2 Probability-based paths

In our model introduced in section 3 the state of the HMM was defined in

terms of the tile where the device is positioned. Thus, in this case the con-

cept of space-time trajectory follows immediately as the time sequence of states,

in which we shall use the coordinates of each tile to build the so-called path

{(xdt0 , ydt0), (xdt1 , ydt1), . . . , (xdtN , ydtN )}, where at each time instant ti the spa-

tial coordinates xdti and ydti for device d are specified. In more complex definitions

of states, another procedure should lead us to deduce the path from the adopted

concept of HMM state. If auxiliary information for each tile is available, instead

of the geographical centroid of each tile, another “statistical”centroid can be used

(e.g. using land use information and/or official population density figures). It is

obvious that the smaller the tiles, the more precise the estimation procedures.

Given an HMM, it is well-known that at least two different methods can be ap-

proached to build a sequence of states, i.e. a trajectory in our case. We can compute

either the most probable sequence of states or the sequence of most probable states.

In mathematical terms, the former is the sequence

T ∗dt0:tN = argmaxTdt0:tN
P
(
Tdt0:tN

∣∣Edt0:tN , I
aux
)
, (12)

which can be computed by means of the Viterbi algorithm [see e.g. 53]. The second

method is indeed given by

T ∗dt0:tN =
(

argmaxTdt0
γdt0 , argmaxTdt1

γdt1 , . . . , argmaxTdtN
γdtN

)
, (13)

where γdtj = P
(
Tdtj

∣∣Edt0:tN , I
aux
)

are the posterior location (state) probabilities.

We choose the maximal posterior marginal (MPM) trajectory because it is more

robust and because unimodal probabilities are expected so that differences will not

be large [53].

5.3 Quantitative measures of movement data

Once a path is assigned to each device we can compute different indicators as well as

joint measures. Following [54] (see also multiple references therein) we distinguish

the following groups of measures:

• Time geography.- This represents a framework for investigating constraints

such as maximum travel speed on movement in both the spatial and temporal

dimensions. These constraints can be capability constraints (limiting move-

ment possibilities because of biological/physical abilities), coupling constraints

(specific locations a device must visit thus limiting movement possibilities),

and authority constraints (specific locations a device cannot visit thus also

limiting movement possibilities).

• Path descriptors.- These represent measurements of path characteristics such

as velocity, acceleration, turning angles. By and large, they can be charac-

terised based on space, time, and space-time aspects.
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• Path similarity indices.- These are routinely used to quantify the level of simi-

larity between two paths. Diverse options exist in the literature, some already

taking into account that paths are sequences of stays and displacements [see

e.g. 54].

• Pattern and cluster methods.- These seek to identify spatial–temporal pat-

terns from the whole set of paths. These are mainly used to focus on the

territory rather than on individual patterns. They also consider diverse as-

pects on space, time, and space-time features.

• Individual–group dynamics.- This set of measures compile methods focusing

on individual device displacement within the context of a larger group of

devices (e.g. a tourist within a larger group of tourists in the same trip).

• Spatial field methods.- These are based on the representation of paths as space

or space-time fields. Different advanced statistical methods can be applied

such as kernel density estimation or spatial statistics.

• Spatial range methods.- These are focused on measuring the area containing

the device displacement, such as net displacement and other distance metrics.

We include an illustrative example with a set of indicators. We shall compute

them on the simulated scenario with 218 devices in a territory with an irregular

polygon shape and a bounding box of 10km × 10km. The indicators are strongly

inspired on those used in animal trajectory analysis [see 55, and references therein].

1 Number of coordinates (nCoord).- This is the observed number of coordinates

along the path, thus coincidental with the time extension of the HMM.

2 Path length (length).- This is the total length of the path, i.e.

Length =

T∑
t=1

`t,

where `t =
√

(xt − xt−1)2 + (yt − yt−1)2.

3 Path distance (distance).- This is the net distance between the initial and

final fixes (points) in the path, i.e.

distance =
√

(xT − x0)2 + (yT − y0)2.

4 Path duration (duration).- This is the total duration of the path, i.e.

duration = tN − t0.

5 Mean velocity (meanVelocity).- This is the global mean velocity of the device

along the path, i.e.

meanVelocity =
1

duration
(xT − x0, yT − y0).

Notice that it is a vector, thus we compute both the x- and y- dimensions.
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6 Radius of gyration (Rg).- This is the radius of gyration of the path according

to the formula

Rg =

√√√√ 1

T

T∑
t=1

(x2
t + y2

t ).

It provides a view of the extension of the territory range covered by the path.

7 Path straightness (straightness).- This is the index distance
length , which provides

a first-order magnitude of the tortuosity of the path, with values between 0

(extremely tortuous) and 1 (a straight line).

8 Turning angles (turningAngles).- These are the angles θt denoting the change

of direction at each time instant t. See figure 10.

9 Directional change (directionalChange).- This is a measure of the speed of

angular change of direction, defined as

directionalChangeti =
θti

ti − ti−1
.

10 r Index (r).- This is another more complex measure of the tortuosity of the

path, defined as

r =

∣∣∣∣∣∣ 1

T̄

T̄∑
t=1

eiθ̄t

∣∣∣∣∣∣
where θ̄t denotes the turning angle (see figure 10) at time t of the rediscretized

path obtained by sampling the path at equal-length steps.

11 Maximum expected displacement (EmaxA and EmaxB).- These two related in-

dicators provide a measure of the maximum expected displacement according

to

Eamax =
ξ

1− ξ ,

where ξ ≡ 1
T̄

∑T̄
t=1 cos

(
θ̄t
)
, with θ̄t being the turning angles of the rediscre-

tised path obtained by sampling the path at equal-length steps.

The related indicator Ebmax is defined as

Ebmax =
1

T̄

T̄∑
t=1

∆̄t ×
ξ

1− ξ ,

where ∆̄t is the step length at time t of the rediscretised path.

12 Path sinuosity (sinuosity and sinuosity2).- The original path sinuosity

index is defined as

sinuosity = 1.18× σθ√
∆̄
,

where σθ =
√

1
T

∑T
t=1(θt − θ̄)2, θ̄ = 1

T

∑T
t=1 θt and ∆̄ = 1

T

∑T
t=1 ∆t. A second

version using rediscretised paths is given by:
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sinuosity2 =
2√

∆̄×
(

1+ξ
1−ξ

)
+
(
σ∆

∆̄

)2 .
We have computed these indicators on our simulated scenario producing the val-

ues represented in figures 11 and 12. This list of indicators is not exhaustive (even

some alternative forms for them can be found in the literature as for Ea,bmax or the

sinuosity index). Our main argument is that filtering, comprising identification of

usual environment, home/work detection, second home detection, etc., must be

based on detailed algorithms using these indicators avoiding as much as possible

extremely simplistic approaches such as a home is a location where devices are be-

tween 23:00 and 06:00 or similar. Ultimately, findings thereof should be connected

to other sociodemographic variables producing thus novel insights.

As a simple example, for each given path we can identify the time instants where

the observed speed is below a given threshold for a consecutive number of time inter-

vals thus identifying potential home/work locations (see figure 13). Then, different

indicators can be computed for this subpath so that further distinction between

activities could be unravelled (shopping, sporting, etc.). Notice that the limit im-

posed by the spatial resolution of the HMM and the accuracy of the emission model

establish a bound in this regard.

The reader immediately will realise how more complex and realistic displacement

patterns in the simulator are needed to go deep into this analysis in practical terms.

In the example in figure 13 the displacement pattern does not correspond to a re-

alistic human displacement whatsoever, so that no reasonable detection algorithm

can be proposed using this data. This remains for further work in the future.

Finally, let us close this section by calling reader’s attention on the positive feed-

back arising from this statistical filtering exercise. Once concepts such as usual

environment, home/work location, second home location, etc. are computed, the

definition of state for the HMM could be enhanced thus incorporating more infor-

mation into the geolocation estimation. As a final suggestion widening the possibil-

ities, instead of defining indicators such as above, deep learning techniques could

be also tested to extract different characteristics of the paths.

6 Aggregation of individuals detected by a network
This module focuses on providing a probability distribution for the number of indi-

viduals detected by a mobile telecommunication network. This module will take the

posterior location probabilities and the multiplicity probabilities as input data. Af-

ter introducing some general remarks, we shall provide a method to build the target

probability distribution, which will then be adapted to provide also the probability

distribution of individuals displacing between territorial units at each time instant.

6.1 General remarks

Firstly, the aggregate information is on the number of detected individuals, not

on the number of devices. This is a very important difference with virtually any
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other approach found in the literature [see e.g. 6, 10]. We take advantage of the

preceding modules working at the device level to study in particular the device

multiplicity per individual. This has strong implications regarding agreements be-

tween NSOs and MNOs to access and use their mobile network data for statistical

purposes.

As we can easily see, working with the number of devices instead of the number of

individuals poses severe identifiability problems requiring more auxiliary informa-

tion. Let us consider an extremely simplified illustrative example. Let us consider

a population U1 of 5 individuals with 2 devices each one and a population U2 of

10 individuals with 1 device each one. Suppose that in order to make our inference

statement about the number N of individuals in the population we build a statis-

tical model relating N and the number of devices N (dev), that is, basically we have

a probability distribution PN (N (dev)) for the number N (dev) of devices dependent

on the number of individuals, from which we shall infer N . In this situation we

have PN(1) = PN(2) even when N (1) 6= N (2). There is no statistical model what-

soever capable of distinguishing between U1 and U2 [see Definition 5.2 in 56, for

unidentifiable parameters in a probability distribution]. To cope with the duplicity

of devices using an aggregated number of devices we would need further auxiliary

information, which furthermore must be provided at the right territorial and time

scale.

Secondly, we shall use again the language of probability in order to carry forward

the uncertainty already present in the preceding stages all along the end-to-end

process. In another words, if the geolocation of network events is conducted with

certain degree of uncertainty (due to the nature itself of the process - see section 3)

and if the duplicity of a given device (carried by an individual with another device)

is also probabilistic in nature (see section 4), then a priori it is impossible to provide

a certain number of individuals[1] in a given territorial unit. For this reason, we shall

focus on the probability distribution of the number of individuals detected by the

network and shall avoid producing a point estimation. Notice that having a prob-

ability distribution amounts to having all statistical information about a random

phenomenon and you can choose a point estimation (e.g. the mean, the mode or

the median of the distribution) together with an uncertainty measure (coefficient

of variation, credible intervals, etc.).

Thirdly, the problem is essentially multivariate and we must provide information

for a set of territorial units. Thus, the probability distribution must be a multi-

variate distribution. Notice that this is not equivalent to providing a collection of

marginal distributions over each territorial unit. Obviously, there will be a correla-

tion structure, the most elementary expression of which is that individuals detected

in a given territorial unit cannot be detected in another region, so that the final

distribution needs to incorporate this restriction in its construction.

[1]Notice that this same argument is valid for the number of devices.
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Finally, the process of construction of the final multivariate distribution for the

number of detected individuals must make as few modelling assumptions as possible,

if any. In case an assumption is made (and this should be accomplished in any

use of statistical models for the production of official statistics, in our view), it

should be made as explicit as possible and openly communicated and justified.

In this line of thought, we shall strongly based the aggregation procedure on the

results of preceding modules avoiding any extra hypothesis. Basically, our starting

assumptions for the geolocation and the duplicity detection will be carried forward

as far as possible without introducing new modelling assumptions of any kind.

6.2 Probability distribution of the number of detected individuals

To implement the principles outlined above, we shall slightly change the notation.

Firstly we define the vectors e
(1)
i = ei and e

(2)
i = 1

2ei, where ei is the ith canonical

unit vector in RNT (with NT the number of tiles in the reference grid). These defi-

nitions are set up under the working assumption of individuals carrying at most 2

devices in agreement with the proposal devised in section 4. Should we consider a

more general situation, the generalization is obvious, although more computation-

ally demanding.

Next, we define the random variable Tdt ∈ {e(1)
i , e

(2)
i }i=1,...,NT with probability

mass function P (Tdt|E1:D, I
aux) given by

P
(
Tdt = e

(1)
i |E1:D, I

aux
)

= γdti · p(1)
d (14a)

P
(
Tdt = e

(2)
i |E1:D, I

aux
)

= γdti · p(2)
d (14b)

where p
(1)
d and p

(2)
d (p

(1)
d +p

(2)
d = 1) are the device duplicity probabilities introduced

in section 4. Notice that this is a categorical or multinoulli random variable. Finally,

we define the multivariate random variable Nnet
t providing the number of individuals

[Nnet
t ]i = Nnet

ti detected by the network at each tile i = 1, . . . , NT at time instant t:

Nnet
t =

D∑
d=1

Tdt. (15)

The sum spans over the number of devices filtered as members of the target pop-

ulation according to section 5. If we are analysing, say, domestic tourism, D will

amount to the number of devices in the network classified with a domestic tourism

pattern according to the algorithms designed and applied in the preceding module.

For illustrative examples, since we have not developed the statistical filtering mod-

ule yet, we shall concentrate on present population.

The random variable Nnet
t is, by construction, a Poisson multinomial random

variable. The properties and software implementation of this distribution are not

trivial [see e.g. 57] and we shall use Monte Carlo simulation methods by convolution



Salgado et al. Page 21 of 57

to generate random variates according to this distribution.

The reasoning behind this proposal can be easily explained with a simplified illus-

trative example. Let us consider an extremely simple scenario with 5 devices and 5

individuals (thus, none of them carrying two devices), and 9 tiles (a 3× 3 reference

grid). Let us consider that the location probabilities γdti = γti are the same for

all devices d at each time instant and each tile. In these conditions p
(1)
d = 1 and

p
(2)
d = 0 for all d. Let us focus on the univariate (marginal) problem of finding the

distribution of the number of devices/individuals in a given tile i. If each device d

has probability γti of detection at tile i, then the number of devices/individuals at

tile i will be given by a binomial variable Binomial(5, γti). If the probabilities were

not equal, then the number of devices/individuals would be given by a Poisson bino-

mial random variable Poisson-Binomial(5; γ1ti, γ2ti, γ3ti, γ4ti, γ5ti), which naturally

generalizes the binomial distribution. If we focus on the whole multidimensional

problem, then instead of having binomial and Poisson-binomial distributions, we

must deal with multinomial and Poisson-multinomial variables. Finally, if p
(2)
d 6= 0

for all d, we must avoid double-counting, hence the factor 1
2 in the definition of e

(2)
i .

Notice that the only assumption made so far (apart from the trivial question of

the maximum number of 2 devices carried by an individual) is the independence

for two devices to be detected at any pair of tiles i and j. This independence as-

sumption allows to claim that the number of detected individuals distributes as a

Poisson-multinomial variable, understood as a sum of independent multinoulli vari-

ables with different parameters. There is no extra assumption in this derivation.

The validation of this assumption is subtle, since ultimately it will depend on the

correlation between the displacement patterns of individuals in the population. If

the tile size is chosen small enough, we claim that the assumption holds fairly well

and it is not a strong condition imposed on our derivations. On the other hand, if

the tiles are too large (think of an extreme case about a reference grid being com-

posed of whole provinces as tiles), we should expect correlations in the detection of

individuals: those living in the same province will have very large correlation and

those living in different provinces will show nearly null correlation. Thus, the size

of the tiles imposes some limitation to the validity of the independence assumption.

Even the transport network in a territory will certainly influence these correlations.

Currently, we cannot analyse quantitatively the relationship between the size of the

tiles and the independence assumption with the network data simulator because

we need both realistic simulated individual displacement patterns and simulated

correlated trajectories (probably connected to the sharing of usual environments,

home/work locations, etc.).

The issue about the size of the tile also makes us consider the computation of the

distribution of the number of detected individuals at a coarser territorial degree.

Let us consider a coarser territorial breakdown composed of combination of tiles

called, say, regions. We shall denote them as T̄r =
⋃
i∈Ir Ti, where Ir denotes the

set of tile indices composing region r. If the independence assumption still holds

(because the size of the region is still small enough), then we can reproduce the

whole derivation above just by defining the location probability γ̄dtr at region r as
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γ̄dtr =
∑
i∈Ir

γdti. (16)

The subsequent elaboration to build the final Poisson-multinomial-distributed

number of detected individuals is completely similar. Notice again that there exists

a limitation in the sum of device-level distributions put by the size of the underlying

region breakdown. The random vector N̄net
t of individuals per region in terms of

the deduplicated location T̄dt per region would be also expressed as a sum:

N̄net
t =

D∑
d=1

T̄dt. (17)

Notice that this decomposition allows us to write straightforwardly the mean

vector and the covariance matrix for N̄net
t . Define the deduplicated location proba-

bilities per region as γ̄dedup
dtr ≡ (1− p

(2)
d

2 ) · γ̄dtr for all regions r = 1, . . . , R. Then

E
[
N̄net
t

]
=

D∑
d=1

R∑
r=1

γ̄dedup
dtr er, (18)

V
[
N̄net
t

]
=

D∑
d=1

R∑
r=1

γ̄dedup
dtr · (1− γ̄dedup

dtr )Err. (19)

6.3 Probability distribution for the number of detected individuals moving between

territorial units

The construction of the probability distribution for the number of individuals N̄net
t

detected by the network can be easily generalized to the number of individuals

N̄net
t,·· detected by the network moving between territorial units. We begin by defining

matrices E
(1)
rs = Ers and E

(2)
rs = 1

2Ers, where Ers are the Weyl matrices of dimension

R×R. Next, we define the matrix random variable Edt ∈ {E(1)
rs , E

(2)
rs }r,s=1...,R with

probability mass function given by

P
(
Edt = E(1)

rs

)
= γ̃dt,sr · p(1)

d , (20a)

P
(
Edt = E(2)

rs

)
= γ̃dt,sr · p(2)

d , (20b)

where γdt,sr stands for the joint location probabilities computed in the geolocation

module aggregated to the regions r, s = 1, . . . , R. Notice that, although matrix-

valued, this is still a categorical or multinoulli random variable. Then, we can define

the origin-destination matrix between regions of individuals detected by the network

by

N̄net
t =

D∑
d=1

Edt, (21)
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which, as before, distributes according to a multinomial-Poisson distribution. Again,

we shall use Monte Carlo techniques to deal with it. If we define the dedupli-

cated joint location probabilities γ̃dedup
dt,sr =

(
1− p

(2)
d

2

)
· γ̃dt,sr, then the mean origin-

destination matrix is given by

E
[
N̄net
t

]
=

D∑
d=1

R∑
r,s=1

γ̃dedup
dt,sr · Ers. (22)

6.4 An example with simulated data

Let us illustrate this approach with an example generated with the mobile network

event simulator. We consider again the toy scenario with a population of 186 sub-

scribers with 218 mobile devices in a territory with a bounding box of 10km×10km

divided into 10 regions as in figure 14. The simulator provides the true position of

each individual at each time instant as well as the correspondence between individu-

als and devices so that we can make a comparison with the (synthetic) ground truth.

The posterior distributions of the number of individuals N̄net
t per region detected

by the network is computed with Monte Carlo techniques and the results are rep-

resented in figure 15. Once we have posterior distributions we can also compute

credible intervals for each region and each time instant (see figure 16). Although

we can observe a good degree of accuracy, there exists a non-negligible number of

regions and time instants in which the intervals do not cover the true values. A

deeper analysis to unravel the roles of the geolocation and the duplicity probability

computation is needed and is beyond the scope of this paper (false negative cases

for duplicity has not been corrected, the HMM state definition does not include

velocity, and regions and coverage areas have no correlation at all, thus all being

very simplistic – see section 9).

We can also construct origin-destination matrices for the number of individuals

detected by the network and compare with true values provided by the simulator.

Indeed, according to the proposed methodology we can even compute their credible

intervals (see figure 21).

These probabilities, together with the device duplicity probabilities and auxiliary

information from official data and the telco market, will be the input data for the

last module on inference.

7 Inference
The final module focuses on the computation of the probability distribution for the

number of individuals in the target population conditioned on the number of individ-

uals detected by the network and some auxiliary information. Our first observation

is that this auxiliary information is absolutely necessary to provide a meaningful

inference on the target population due to similar identifiability reasons as those

mentioned in section 6.1 to introduce the deduplication module. This auxiliary

information will be basically telco market information in the form of penetration
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rates (ratio of number of devices to number of individuals in the target population)

and register-based population data. This information will provide the necessary link

between the number of individuals at the network level and at the target popula-

tion level. This combination of data sources is indeed desirable not only to produce

better and more accurate estimates but also to provide more coherent information

among diverse data sources. However, notice that this data integration must avoid

imposing findings from one data source on the other data source thus precluding

new insights about the target population.

In more concrete terms, register-based population figures offer information about

society from a concrete demographic perspective (residential population) with a

given degree of spatial and time breakdown. Mobile network data, however, pro-

vides the opportunity to reach unprecedented spatial and time scales as well as

a complementary view on the population (present population). The integration of

sources, in our view, must be careful with these differences bringing similarities and

contrasts at the same time into the statistical analysis. In this line of thought, we

propose to use hierarchical models (i) to produce probability distributions, (ii) to

integrate data sources, and (iii) to account for the uncertainty and the differences

of concepts and scales.

We propose a two-staged modelling exercise. Firstly, we assume that there exists

an initial time instant t0 in which both the register-based target population and

the actual population can be assimilated in terms of their physical location. We

can assume, e.g., that at 6:00am all devices stay physically at the residential homes

declared in the population register. This assumption will trigger the first stage in

which we compute a probability distribution for the number of individuals Nt0 of

the target population in all regions in terms of the number of individuals Nnet
0

detected by the network and the auxiliary information. Secondly, we assume that

individuals displace over the geographical territory independently of the MNO, i.e.

subscribers of MNO 1 will show a displacement pattern similar to those of MNO

2. This assumption will trigger the second stage in which we provide a probability

distribution for the number of individuals Nt for later times t > t0.

Regarding the origin-destination matrix, we can use the same assumptions to infer

the number of individuals moving from one region to another at time instant t, also

providing credible intervals as an accuracy indicator.

7.1 Present population at the initial time t0

For ease of notation we shall drop the time index in this section. The auxiliary

information is provided by the penetration rates P net
r of the MNO and the register-

based population N reg
r at each region r. We shall combine Nnet

r , Pr, and N reg
r

to produce the probability distribution for N = (N1, . . . , NR)T . We follow the ap-

proach used in the species abundance problem in Ecology [58]. This approach clearly

distinguishes between the state and the observation process. The state process is

the underlying dynamical process of the population and the observation process is

the procedure by which we get information about the location and timestamp of
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each individual in the target population. The different available auxiliary informa-

tion will be integrated using different levels in the hierarchy of the statistical model.

The first level makes use of the detection probability pr of individuals of a network

in each region r. We shall concentrate first on the observation process. We model

Nnet
r ' Binomial (Nr, pr) . (23)

This model makes the only assumption that the probability of detection pr for

all individuals in region r is the same. This probability of detection amounts basi-

cally to the probability of an individual of being a subscriber of the given mobile

telecommunication network. This assumption will be further discussed below. As a

first approximation, we may think of pr as a probability related to the penetration

rate Pr of the MNO in region r. At this first level, we shall consider this as an

external parameter taken e.g. from the national telecommunication regulator. The

posterior probability distribution for Nr in terms of Nnet
r will be given by

P
(
Nr|Nnet

r

)
=

{
0 if Nr < Nnet

r ,

negbin (Nr −Nnet
r ; 1− pr, Nnet

r + 1) if Nr ≥ Nnet
r ,

where negbin (k; p, r) ≡
(
k+r−1
k

)
pk(1 − p)r denotes the probability mass function

of a negative binomial random variable of values k ≥ 0 with parameters p and r.

Once we have a distribution, we can provide a point estimator, a posterior variance,

a posterior coefficient of variation, a credible interval, and as many indicators as

possible computed from the distribution. For example, if we use the MAP criterion

(the posterior mode) or the posterior mean we can provide as point estimators

N̂MAP
r = Nnet

r +

⌊
(1− pr) ·Nnet

r

pr

⌋
, (24a)

N̂mean
r = Nnet

r +
(1− pr) · (Nnet

r + 1)

pr
. (24b)

Let us now introduce the second level focused on the uncertainty in the detection

probability pr. A priori, we can think of a detection probability pkr per individual

k in the target population and try to device some model to estimate pkr in terms

of auxiliary information (e.g. sociodemographic variables, income, etc.). We would

need subscription information related to these variables for the whole target popula-

tion, which is unattainable. Instead, we may consider that the detection probability

pkr shows a common part for all individuals in region r plus some additional un-

known terms, i.e. something like pkr = pr + noise. At a first stage, we propose

to implement this idea by modeling pr ' Beta (αr, βr) and choosing the hyperpa-

rameters αr and βr according to the penetration rates P net
r and the register-based

population figures N reg
r .
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Notice that the penetration rate is also subjected to the problem of device duplic-

ities (individuals having two or more devices). To deduplicate, we make use of the

duplicity probabilities pd computed in section 4 under the same assumptions (at

most two devices per individual) and of the posterior location probabilities γ̄dr in

region r for each device d. Notice that we have also dropped out the time subscript

for ease of notation, since we are currently focusing on the initial time t0. We define

Ω(1)
r =

∑D
d=1 γ̄dr · p

(1)
d∑D

d=1 γ̄dr
, (25a)

Ω(2)
r =

∑D
d=1 γ̄dr · p

(2)
d∑D

d=1 γ̄dr
. (25b)

The deduplicated penetration rates are defined as

P̃ net
r =

(
Ω(1)
r +

Ω
(2)
r

2

)
· P net

r . (25c)

To get a feeling on this definition, let us consider a very simple situation. Let

us consider N
(1)
r = 10 individuals in region r with 1 device each one, N

(2)
r = 3

individuals in region r with 2 devices each one, and N
(0)
r = 2 individuals in region

r with no device. Let us assume that we can measure the penetration rate with

certainty, so that P rm
r = 16

15 . The devices are assumed to be neatly detected by the

HMM (i.e. γ̃dr = 1 − O(ε)) and duplicities are also inferred correctly (p
(2)
d = O(ε)

for d(1) and p
(2)
d = 1−O(ε) for d(2)). Then Ω

(1)
r = 10

16 +O(ε) and Ω
(2)
r = 6

16 +O(ε).

The deduplicated penetration rate will then be P̄ net
r = 13

15 + O(ε), which can be

straightforwardly understood as a detection probability for an individual in this

network in region r.

Let us now denote by N reg
r the population of region r according to an external

population register. Then, we fix

αr + βr = N reg
r , (26a)

αr
αr + βr

= P̃ net
r , (26b)

which immediately implies that

αr = P̃ net
r ·N reg

r , (27a)

βr =
(

1− P̃ net
r

)
·N reg

r . (27b)

There are several assumptions in this choice. Firstly, on average, we assume that

detection takes place with probability P̃ net
r . We find this assumption reasonable.

Another alternative choice would be to use the mode of the beta distribution instead
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of the mean. Secondly, detection is undertaken over the register-based population.

We assume some coherence between the official population count and the network

population count. A cautious reader may object that we do not need a network-

based estimate if we already have official data at the same time instant. We can

make several comments in this regard:

• As stated above, a degree of coherence between official estimates by combin-

ing data sources to conduct more accurate estimates is desirable. By using

register-based population counts in the hierarchy of models, we are indeed

combining both data sources. In this combination notice, however, that the

register-based population is taken as an external input in our model. There

exist alternative procedures in which all data sources are combined at an equal

footing [59, 60]. We deliberately use the register-based population as an ex-

ternal source and do not intend to re-estimate it by combination with mobile

network data.

• Register-based populations and network-based populations show clearly dif-

ferent time scales. The coherence we demand will be forced only at the given

initial time t0 after which the dynamics of the network will provide the time

scale of the network-based population counts without further reference to the

register-based population.

Thirdly, the penetration rates P net
r and the official population counts N reg

r come

without error. Should this not be attainable or realistic, we would need to intro-

duce a new hierarchy level to account for this uncertainty (see below). Lastly, the

deduplicated penetration rates are computed as a deterministic procedure (using a

mean point estimation), i.e. the deduplicated penetration rates are also subjected

to uncertainty, thus we should also introduce another hierarchy level to account for

this uncertainty.

Then, we can readily compute the posterior distribution for Nr:

P
(
Nr|Nnet

r

)
=

{
0 if Nr < Nnet

r ,

betaNegBin (Nr −Nnet
r ;Nnet

r + 1, αr − 1, βr) if Nr ≥ Nnet
r .

(28)

It is a displaced beta negative binomial distribution (betaNegBin(k; s, α, β) ≡
Γ(k+s)
k!Γ(s)

B(α+s,β+k)
B(α,β) ) with support in Nr ≥ Nnet

r and parameters s = Nnet
r + 1, α =

αr − 1 and β = βr. Again, we can provide point estimates as well as posterior

variances, credible intervals, etc. Under the MAP and the mean criterion we have

N̂MAP = Nnet
r +

⌊
(1− P̃ net

r ) ·Nnet
r

P̃ net
r

− Nnet
r

N reg
r · P̃ reg

r

⌋
,

N̂mean = Nnet
r +

(Nnet
r + 1) · (1− P̃ net

r ) ·N reg
r

P̃ reg
r ·N reg

r − 1
.

The uncertainty is accounted for by computing the posterior variance, the poste-

rior coefficient of variation, or credible intervals.
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Notice that when αr, βr � 1 (i.e., when min(P̃ net
r , 1− P̃ net

r ) ·N reg
r � 1) the beta

negative binomial distribution (28) reduces to the negative binomial distribution

P
(
Nr|Nnet

r

)
=

{
0 if Nr < Nnet

r ,

negbin
(
Nr −Nnet

r ; βr
αr+βr−1 , N

net
r + 1

)
if Nr ≥ Nnet

r .

Note also that βr
αr+βr−1 ≈ 1−P̃ net

r so that in this case we do not need the register-

based population (this is similar to dropping out the finite population correction

factor in sampling theory for large populations). In this case, under the MAP and

the mean criterion for this distribution we have

N̂MAP = Nnet
r +

⌊
(1− P̃ net

r )

P̃ net
r

·Nnet
r

⌋
, (30a)

N̂mean = Nnet
r +

(1− P̃ net
r )

P̃ net
r

·
(
Nnet
r + 1

)
. (30b)

So far, the inference has been conducted independently in each region r. We can

introduce another layer in the hierarchy by modelling also the hyperparameters

(αr, βr) so that the relationship between these parameters and the external data

sources (penetration rates and register-based population counts) is also uncertain.

For example, we can go all the way down the hierarchy, assume a cross-cutting

relationship between parameters and some hyperparameters and postulate

Nnet
r ' Bin (Nr, pr) , for all r = 1, . . . , R, (31a)

pr ' Beta (αr, βr) , for all r = 1, . . . , R, (31b)(
logit

(
αr

αr + βr

)
, αr + βr

)
' N

(
µγr(γ0, γ1; P̄ net

r ), τ2
γ

)
×Gamma

(
1 + ξ,

N reg
r

ξ

)
, for all r = 1, . . . , R,

(31c)(
logγ0, γ1, τ

2
γ , ξ
)
' fγ

(
logγ0, γ1, τ

2
γ

)
× fξ(ξ), (31d)

where we have denoted µγr(γ0, γ1; P̄ net
r ) ≡ log

(
γ0

[
P̄net
r

1−P̄net
r

]γ1
)

and fγ and fξ stand

for prior distributions.

The interpretation of this hierarchy is simple. It is just a beta-binomial model in

which the beta parameters αr, βr are correlated with the deduplicated penetration

rates. This correlation is expressed through a linear regression model upon their

logits with common regression parameters across the regions, both the coefficients

and the uncertainty degree. On average, the detection probabilities pr will be the

deduplicated penetration rates with uncertainty accounted for by hyperparame-

ters γ0, γ1, τ
2
γ . For large population cells, the hyperparameter ξ drops out so that

finally the register-based population counts N reg
r play no role in the model, as above.
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Under the specifications (31), after some tedious computations, we can show that

the multivariate distribution for the number of individuals N in the target popula-

tion conditional on the number of individuals Nnet detected by the network is given

by a continuous mixture:

P
(
N|Nnet

)
∝
∫
RR
dRy ωobs

(
y; P̄net

) R∏
r=1

negbin (Nr −Nnet
r ; 1− p(yr), Nnet

r + 1)

p(yr)
,

(32)

where

• negbin(k; p, r) stands for the probability mass function of the negative bino-

mial distribution for variable k and parameters p and r;

• p(yr) ≡ eyr

1+eyr ;

• ωobs(y; Pnet) =
∫

Ωβ
d logγ0dγ1dτ2

γ fγ
(
logγ0, γ1, τ

2
γ

)
n
(
y;µγ(γ0, γ1; P̄net),Σγ

)
where

– n(x;µ,Σ) stands for the probability density function of the multivariate

normal distribution for variable x and mean µ and covariance matrix Σ.

– µγr(γ0, γ1; P̄ net
r ) = log

(
γ0

[
P̄net
r

1−P̄net
r

]γ1
)

.

– Σγ = τ2
γ IR×R.

In this derivation, again the assumption αr, βr � 1 is taken for granted.

In rigour, we should have included Pnet as conditioning random variables to-

gether with Nnet, but we have opted to keep the notation as simple as possible.

To have an expression which can be computed we need to further specify the

prior fγ . As a first example, let us consider γ0 = γ1 = 1 and τ2
γ → 0+. This

amounts to having certainty about the values of αr and βr, as above, so that

ωobs(y; P̄net) =
∏R
r=1 δ(yy−log P̄ net

r ), where δ(·) stands for the Dirac delta function.

Upon normalization expression (32) reduces to

P
(
N|Nnet

)
=

R∏
r=1

negbin
(
Nr −Nnet

r ; 1− P̃ net
r , Nnet

r + 1
)
. (33)

The marginal distribution for region r reduces to (30), which was also obtained

above through a direct reasoning.

Finally, we can also introduce the state process. The system is a human popula-

tion and we can make a common modelling hypothesis to represent the number of

individuals Nr in region r of the target population as a Poisson-distributed random

variable in terms of the population density, i.e.

Nr ' Poisson (Arσr) , (34)

where σr stands for the population density of region r and Ar denotes the area of

region r. We choose to model Nr in terms of the population density to make an
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auxiliary usage of some results already found in the literature [6].

Similarly to the observation process, we introduce the following hierarchy:

Nnet
r ' Bin (Nr, pr) , for all r = 1, . . . , R, (35a)

Nr ' Poisson (Arσr) , for all r = 1, . . . , R, (35b)

pr ' Beta (αr, βr) , for all r = 1, . . . , R, (35c)

σr ' Gamma (1 + ζr, θr) , for all r = 1, . . . , R, (35d)

where the hyperparameters will express the uncertainty about the register-based

population and the detection probability. The values for αr and βr are taken from

(27). Regarding the hyperparameters θr and ζr, notice that the modes of the gamma

distributions are at τr = ζr · θr and the variances are given by V (τr) = (ζr + 1) ·
θ2
r . We shall parametrise these gamma distributions in terms of the register-based

population densities σreg
r as

ζr · θr = σreg
r + ∆σr,√

(ζr + 1) · θ2
r = εr · σreg

r ,

where εr can be viewed as the coefficient of variation for σreg
r and ∆σr can be

interpreted as the bias for σreg
r . This parametrization implies that

θr(∆σr, εr) =
σreg
r

2

(
1 +

∆σr
σreg
r

)
√√√√1 +

(
2εr

1 + ∆σr
σreg
r

)2

− 1

 ,
ζr(∆σr, εr) =

2√
1 +

(
2εr

1+ ∆σr
σ

reg
r

)2

− 1

. (36)

Under assumptions (35) and assuming αr, βr � 1, as above, we get

P
(
N|Nnet

)
=

R∏
r=1

negbin

(
Nr −Nnet

r ;
βr

αr + βr
·Q(θr), N

net
r + 1 + ζr

)
(37)

where Q(θr) ≡ Arθr
1+Arθr

. The interpretation of this hierarchy is also simple. It is just

a Poisson-gamma model in which the gamma parameters have been chosen so that

we account for the uncertainty in the register-based population figures N reg
r .

Usual point estimators are easily derived from (37):
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N̂MAP
r = Nnet

r +

⌊
(1− P̃ net

r ) ·Q(θr)

1− (1− P̃ net
r ) ·Q(θr)

(
Nnet
r + ζr

)⌋
, (38)

N̂mean
r = Nnet

r +
(1− P̃ net

r ) ·Q(θr)

1− (1− P̃ net
r ) ·Q(θr)

·
(
Nnet
r + 1 + ζr

)
(39)

Accuracy indicators such as posterior variance or credible intervals are computed

from the distribution (37).

Expression (37) contains the uncertainty of both the observation and the state

processes. In the limiting case ε+r → 0 and ∆σr → 0, i.e. having certainty about the

state process, and with equations (27), we have the Poisson limit of the negative

binomial distribution so that

P
(
N|Nnet

)
=

R∏
r=1

poisson
(
Nr −Nnet

r ; (1− P̄ net
r ) ·Arσreg

r

)
. (40)

The MAP estimator is trivially N̂MAP = Nnet
r +

⌊
(1− P̄r)Arσreg

r

⌋
and the mean

estimator is trivially N̂MAP = Nnet
r + (1− P̄r)Arσreg

r , both of which can be readily

read as the sum of the individuals detected by the network and the individuals not

detected by the network accounted for by the population register.

On the contrary, when εr →∞ (i.e. having no information at all about the state

process), we have Q(θr) = 1 and ζr = 0 so that

P
(
N
∣∣Nnet

)
=

R∏
r=1

negbin
(
Nr −Nnet

r ; 1− P̄r, Nnet
r + 1

)
, (41)

which is the same expression as (33), as expected, since having no information

about the state process is equivalent to having only the observation process.

We can also introduce more levels in the hierarchy:
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Nnet
r ' Binomial (Nr, pr) , for all r = 1, . . . , R, (42a)

Nr ' Poisson (Arσr) , for all r = 1, . . . , R, (42b)

pr ' Beta (αr, βr) , for all r = 1, . . . , R, (42c)

σr ' Gamma

(
ζ + 1,

eθr

ζ

)
, for all r = 1, . . . , R, (42d)(

logit

(
αr

αr + βr

)
, αr + βr

)
' N

(
µγr(γ0, γ1; P̄ net

r ), τ2
γ

)
×Gamma

(
1 + ξ,

N reg
r

ξ

)
, for all r = 1, . . . , R,

(42e)

θr ' N
(
µδr(δ0, δ1;σreg

r ), τ2
δ

)
, for all r = 1, . . . , R, (42f)(

logγ0, γ1, τ
2
γ , ξ
)
' fγ

(
logγ0, γ1, τ

2
γ

)
× fξ(ξ) (42g)(

logδ0, δ1, δ
2
δ , ζ
)
' fδ

(
logδ0, δ1, δ

2
δ

)
× fζ(ζ), (42h)

where we have denoted µδr(δ0, δ1;σreg
r ) ≡ log

(
δ0 [σreg

r ]
δ1
)

and fγ , fξ, fδ, fζ stand

for prior distributions.

The interpretation of this hierarchy is also simple. It is just a combined beta-

binomial and Poisson-gamma model in which the gamma parameters have been

chosen so that the mode is at exp(θr) with an uncertainty degree provided by ζ.

Notice that the smaller ζ, the more degree of uncertainty about the value of θr.

The mode is correlated with the register-based population density σnet
r through a

linear regression.

Under the specifications (42), again after some tedious computation, we can show

that the multivariate distribution for the number of individuals N in the target

population conditional on the number of individuals Nnet detected by the network

is given by

P
(
N|Nnet

)
∝

∫
RR
dRy ωobs

(
y; P̄net

) R∏
r=1

negbin (Nr −Nnet
r ; 1− p(yr), Nnet

r + 1, )

p(yr)

×
∫
RR
dRz ωstate (z;σreg)

R∏
r=1

negbin

(
Nr; q

(
Are

zr

ζ

)
, 1 + ζ

)
, (43)

where

• negbin(k; p, r) stands for the probability mass function of the negative bino-

mial distribution for variable k and parameters p and r;

• p(yr) ≡ eyr

1+eyr ;

• ωobs(y; Pnet) =
∫

Ωγ
d logγ0dγ1dτ2

γ fγ
(
logγ0, γ1, τ

2
γ

)
n
(
y;µγ(γ0, γ1; P̄net),Σγ

)
where

– n(x;µ,Σ) stands for the probability density function of the multivariate

normal distribution for variable x and mean µ and variance matrix Σ.

– µγr(γ0, γ1; P̄ net
r ) = log

(
γ0

[
P̄net
r

1−P̄net
r

]γ1
)

.

– Σγ = τ2
γ IR×R;
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• q
(
Are

zr

ζ

)
≡

Are
zr

ζ

1+Are
zr
ζ

;

• ωstate(z;σreg) =
∫

Ωδ,ζ
d logδ0dδ1dδ2

δdζ fδ
(
logδ0, δ1, δ

2
δ

)
×fζ(ζ) n (z;µδ(δ0, δ1;σnet),Σδ)

with

– n(x;µ,Σ) stands for the probability density function of the multivariate

normal distribution for variable x and mean µ and variance matrix Σ.

– µδr(δ0, δ1;σreg
r ) = log

(
δ0 [σreg

r ]
δ1
)

.

– Σδ = τ2
δ IR×R.

Notice how this expression reveals both factors arising from the observation and

the state processes, respectively. When γ0, γ1, δ0, δ1 → 1, ζ → ζ∗, and τ2
γ , τ

2
δ → 0+

(i.e. when having fully accurate information about the parameters αr, βr and θr),

we have ωγ(y) = δ(y − µγ) and ωδ(z) = δ(z − µδ) so that after normalization

equation (43) reduces to

P
(
N|Nnet

)
=

R∏
r=1

negbin
(
Nr −Nnet

r ; (1− P̄r) ·Qr(ζ∗), Nnet
r + ζ∗ + 1

)
, (44)

where we have denoted Qr(ζ) ≡ q(Arσ
reg
r

ζ ), which is indeed again equation (37).

7.2 Present population at times t > t0

Now, we propose to produce probability distributions for the number of individuals

Ntr in the target population for times t > t0 at region r. Currently, we consider

only closed populations, i.e. neither individuals nor devices enter into or leave the

territory under analysis along the whole time period. This important restriction is

posed to introduce progressively the different methods in order to get a thorough

assessment of every single aspect of the procedure. It will have to be lifted in future

work (e.g. considering sink and source tiles in the reference grid).

Our reasoning tries to introduce as less assumptions as possible. Thus, we begin

by considering a balance equation. Let us denote by Nt,rs the number of individuals

moving from region s to region r in the time interval (t− 1, t). Then, we can write

Ntr = Nt−1r +

NT∑
rt=1
rt 6=r

Nt,rrt −
Nr∑
rt=1
rt 6=r

Nt,rtr

=

NT∑
rt=1

τt,rrt ·Nt−1rt , (45)

where we have defined τt,rs =
Nt,rs
Nt−1s

(0 if Nt−1s = 0). Notice that τt,rs can be

interpreted as an aggregate transition probability from region s to region r at time

interval (t− 1, t) in the target population.

We make the assumption that individuals detected by the network move across

regions in the same way as individuals in the target population. Thus, we can use
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τnet
t,rs ≡

Nnet
t,rs

Nnet
t−1s

to model τt,rs. In particular, as our first choice we shall postulate

τt,rs = τnet
t,rs.

The probability distributions of Nnet
st−1 and [Nnet

t ]sr = Nnet
t,rs were indeed already

computed in the aggregation module (section 6).

Finally, we mention two points. On the one hand, random variables Nrt are defined

recursively in the time index t, so that once we have computed the probability

distribution at time t0, then we can use (45) to compute the probability distribution

at later times t > t0. On the other hand, Monte Carlo techniques should be again

used to build these probability distributions. Once we have probability distributions,

we can make point estimations and compute accuracy indicators as above (posterior

variance, posterior coefficient of variation, credible intervals).

7.3 Origin-destination matrices

The inference of the origin-destination matrices for the target population is more

delicate than the present population because auxiliary information from population

registers do not contain this kind of information. Therefore, the statistical models

proposed above for the present population estimation cannot be applied. As a first

important conclusion we point out that, in our view, National Statistical Plans

should start considering what kind of auxiliary information is needed to make a

more accurate use of Mobile Network Data and new digital data, in general.

We can provide a simple argument extending the above model to produce credible

intervals for the origin-destination matrices. If Ntr and τt,rs denote the number of

individuals of the target population at time t in region r and the aggregate transition

probability from region s to region r at the time interval (t−1, t), then we can simply

define Nt,rs = Nt−1s×τt,rs and trivially build the origin-destination matrix for each

time interval (t− 1, t). Under the same general assumption as before, if individuals

are to move across the geographical territory independently of their mobile network

operator (or even not being a subscriber or carrying two devices), we can postulate

as a first simple choice τt,rs = τnet
t,rs, as before.

7.4 An example with simulated data

Let us again illustrate this approach with the same example generated with the

mobile network event simulator. We consider once more the toy scenario with a

population of 500 individuals and 186 subscribers with 218 mobile devices in a

territory with a bounding box of 10km× 10km divided into 10 regions as in figure

14. The simulator provides the true position of each individual at each time instant

so that we can make a comparison with the (synthetic) ground truth.

For the time being, we shall only provide results for the posterior distributions

(28), (30), and (37), leaving the full hierarchies for future work. Taking advantage

of the simulated ground truth we shall provide results taking as prior information

different ranges of Nnet and N reg to better appreciate how errors in the input data

affect the final estimates. Firstly, we shall consider values Nnet = (1+rbnet) ·Nnet0,
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so that we can investigate the effect of the bias in the input number of individuals

detected by the network with respect to their true values Nnet0. Secondly, similarly,

we shall consider values N reg = (1 + rbreg) · N reg0, so that we can investigate the

effect of the bias in the input number of individuals according to the population

register with respect to their true values N reg0. Finally, for the model with the pro-

cess (37), we shall also consider the range of values for the coefficient of variation

of N reg given by cvNnet = 0.01, 0.05, 0.10, 0.15, 0.20. In all cases we shall only use

the RSS geolocation model with uniform prior.

In figures 18, 19, and 20 we represent the credible intervals for the initial number

of individuals for different values of rbnet and rbreg. In the case with the process

model we have focused on the largest coefficient of variation cvNnet = 0.2.

We observe that the uncertainty grows as the bias of the number of individuals

according to the population register also grows in the positive direction (overesti-

mation). We can also observe that the uncertainty grows in the same fashion with

respect to the bias in the number of individuals detected by the network. The sen-

sitivity in the case of the model with the state process (37) is also evident, thus

inviting not to model the state process. Finally, we also see an overestimation ef-

fect (intervals displacing upwards) as the biases grow. Further analysis is needed,

but in general the computed credible intervals cover the true values fairly accurately.

For the present population at later times and the origin-destination matrices we

will see directly in the next section how to integrate all modules to produce final

estimates from the initial input data from the telecommunication network.

8 Integration of production modules
Once every module is designed and implemented, we must integrate them all into

a production chain. The basic idea is to concatenate them into a sequence so that

the output data from each module is the input data for the next. Mathematically,

for the present population use case this can be expressed as

P
(
Nt|E0:T ,N

reg,Pnet
)

=
∑

Nnet
tr ≥0

P
(
Nt|Nnet

t ,Nreg,Pnet
)
P
(
Nnet
t |E0:T

)
. (46)

We have computed the credible intervals for the number of individuals in the

target population at each time instant t. To carry out the computation we need to

specify the geolocation model (together with the HMM prior), the number of indi-

viduals according to the population register and the penetration rates. In figure 25

we represent an animation for a set of sequences of credible intervals with the RSS

model with uniform prior, the beta negative binomial model for the inference, and

different values for the relative bias and the coefficient of variation for the popula-

tion register figures. Notice that the probability distribution for the number Nnet
tr

of individuals detected by the network is computed from the aggregation module.
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For the origin-destination matrices at times t > 0 we apply this same procedure

following the methodology described in the preceding section, with the distribution

for Nnet
tr and Nnet

t,rs again computed from the aggregation module. The sequence of

origin-destination matrices with the same choices as above is represented in figure

26 for cvreg = 0.01 and rbreg = 0 and in figure 27 for cvreg = 0.20 and rbreg = 0.20.

The combination of choice is multiple so that the whole process can be adapted

to the complex nature of reality. For our simple scenario we have focused on how

to build this modular process. Notice that more sophisticated models can be built

in each module, but the whole structure remains the same.

9 Conclusions and future prospects
To produce official statistics in a sustainable and routinely way in a statistical office,

we need to put in place a modular and evolvable statistical production process pro-

viding valid for diverse statistical domains. We propose an end-to-end process with

these characteristics composed of several modules: (i) a geolocation module provid-

ing location probabilities for each device according to the information provided by

the telecommunication network; (ii) a deduplication module providing device du-

plicity probabilities to disambiguate those devices carried by the same individual;

(iii) a statistical filtering module providing an identification of those devices com-

prised by the target population; (iv) an aggregation module providing distributions

for the number of individuals detected by network, and (v) an inference module

providing distributions for the number of individuals in the target population.

All modules are integrated into a production chain in which the output data from

each module is the input data for the next, apart from auxiliary information inte-

grated from external data sources such as official data and telco market information.

The language of probability used throughout the end-to-end process allows us to

integrate auxiliary information in a natural way and to account for uncertainty all

along the process, thus providing accuracy indicators of both the intermediate and

final estimates.

The main result of this work is not in the details themselves of each module but on

the whole process as a modular structure. Indeed, this modularity will allow us to

further investigate the statistical methodology underlying each of the module. The

geolocation module uses HMMs, which provide a versatile framework to seek more

accurate geolocation either using more complex radio wave propagation models for

the emission model and using more complex definitions of HMM state to account

for the transition pattern across the territory. The use of continuous geolocation

brings another avenue of research to be further explored beyond the use of a refer-

ence grid. The deduplication module can be made more sophisticated accordingly,

i.e. in parallel to the geolocation module. The generalization for deduplication of an

arbitrary number of devices carried by the same individual needs to be done. The

whole statistical filtering needs to be developed with a further stage of the network

event data simulator and real data. An important new ingredient regarding the

identification of devices comprised by the target population is the potential random
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nature of the number D of devices in our proposal. This would introduce a new

level in the hierarchy in which D will be a new integer-valued random variable.

The aggregation module should be made more general by comprising any number

of deduplicated devices. The inference module deals with the estimation in each

region r separately. This should be superseded by a truly multivariate treatment

(e.g. using a Dirichlet-multinomial model). Also, spatial correlations should also be

considered in the modelling exercise.

The whole methodology for the use of mobile network data in official statisti-

cal production needs further research and testing. In our view, Official Statistics

should avoid past errors and struggle for a process-oriented approach to produc-

tion. Concentrating on statistical domains with an abuse of one-off use cases will

bring the risk of growing silos again in the production. In our view, the construc-

tion of this process-oriented statistical process with mobile network data should be

made in partnerships with MNOs clearly identifying those critical elements in the

methodology (which data to access and how to process them). The process must

be end-to-end so that the whole methodology of the production of official statistics

can be openly disseminated.

To generate the illustrative examples included above, apart from the network

data event simulator [41], we have developed independent prototyping R packages

for each module. Package destim for geolocation [? ]. Package deduplication for

deduplicating devices [? ]. Package aggregation to get the probability distribu-

tions of the aggregate number of individuals detected by the network [? ]. Package

inference to get the probability distributions of the aggregate number of individu-

als in the target population [? ]. All these packages, although in a prototyping stage,

already allow us to apply the methodological proposals above using synthetic data

from the simulator or any other real data set with similar contents. Parallelization

programming techniques have been applied in preparation for the scalability needed

in more realistic scenarios.
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Figure 1 Received signal strength and signal dominance measure. Received signal strength and
signal dominance measure for an omnidirectional antenna according to models (1) and (2).
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Figure 2 Network configuration and individual displacements. Positions of 70 antennas,
positions of individuals at time t = 0 (left), and their displacements (right – animation).
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Figure 3 Graphical representation of a hidden Markov model. (Left) Observed variables are
network variables Edt and unobserved variables are tile locations Tdt. (Right) Transition
probabilities in the reference grid for adjacent cells.
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“

Figure 4 [Animations] Posterior location probabilities. Posterior location probabilities for a given
device under models RSS with uniform prior (top left), RSS with network prior (top right), SDM
with uniform prior (bottom left), and SDM with network prior (bottom right).
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Figure 5 Distance between centers of location probabilities and true positions. (Top)
Distribution of distance bdt for all times t and all devices d for models RSS and SDM with
uniform and network priors. (Middle) Time evolution of distributions of distance bdt for all devices
d for the same models. (Bottom) Distribution per device of distance bdt for all times t for the
same models.
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Figure 6 Root mean squared dispersions of location probabilities. (Top) Distribution of root
mean squared dispersions rmsddt for models RSS and SDM with uniform and network priors.
(Middle) Time evolution of distributions of distance rmsddt for the same models. (Bottom)
Distribution per device of root mean squared dispersion rmsddt for all times t for the same models.
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Figure 7 HMM duplicity model. Graphical model for an individual carrying two devices, thus
generating pair of events Ed1:T and Ed′1:T .
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Figure 8 ROC curves for the duplicity probabilities p
(2)
d . ROC curves for the duplicity

probabilities p
(2)
d = 1− p(1)d computed according to eq. (9) for HMMs with two priors and two

emission models.
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(2)
d = 1− p(1)d computed according to eq. (9) for HMMs with two priors
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Figure 11 Path indicator distributions. I. Path indicators (NA correlations indicate static devices;
blank correlations indicate infinite values involved, i.e. straight line paths).
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Figure 13 Time windows of stays. Time instants of a given device path with a speed below
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Salgado et al. Page 49 of 57

0s 100s 200s 300s 400s 500s 600s 700s 800s

region 1
region 2

region 3
region 4

region 5
region 6

region 7
region 8

region 9
region 10

0 10 20 30 0 10 20 30 40 0 10 20 30 40 50 0 20 40 0 20 40 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60

Nnet

Figure 15 Posterior distributions for the number of individuals N̄net
t per region. Posterior

distributions for the number of individuals N̄net
t per region detected by the network compared to

true values (in red) computed according to eq. (17) using the RSS geolocation model with
uniform prior. Only a sample of time instants is shown for visibility’s sake.
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Figure 16 Credible intervals for the number of individuals N̄net
t per region. Credible intervals

(prob = 95%) for the number of individuals N̄net
t per region detected by the network compared to

true values (in red) computed according to the distribution in eq. (17) using the RSS geolocation
model with uniform prior.
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Figure 17 Credible intervals for the OD matrix of the number of individuals N̄net
t per region.

Credible intervals (prob = 95%) for the OD matrix of number of individuals N̄net
t per region

detected by the network compared to true values (in red) computed according to the distribution
in eq. (21) with the RSS geolocation model and uniform prior.
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intervals (prob = 95%) for the initial number of individuals N0 per region compared to true
values (in red) computed according to the distribution in eq. (28) with the RSS geolocation model
and uniform prior.



Salgado et al. Page 52 of 57

rb_Nnet = −0.2 rb_Nnet = −0.15 rb_Nnet = −0.1 rb_Nnet = −0.05 rb_Nnet = 0 rb_Nnet = 0.05 rb_Nnet = 0.1 rb_Nnet = 0.15 rb_Nnet = 0.2 rr_N
reg =

 −
0.2rr_N

reg =
 −

0.15rr_N
reg =

 −
0.1rr_N

reg =
 −

0.05
rr_N

reg =
 0

rr_N
reg =

 0.05
rr_N

reg =
 0.1

rr_N
reg =

 0.15
rr_N

reg =
 0.2

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0
25
50
75

100
125

0
25
50
75

100
125

0
25
50
75

100
125

0
25
50
75

100
125

0
25
50
75

100
125

0
25
50
75

100
125

0
25
50
75

100
125

0
25
50
75

100
125

0
25
50
75

100
125

region

N

Figure 19 Credible intervals for the initial number of individuals N0 per region. Credible
intervals (prob = 95%) for the initial number of individuals N0 per region compared to true
values (in red) computed according to the distribution in eq. (30) with the RSS geolocation model
and uniform prior.
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Figure 20 Credible intervals for the initial number of individuals N0 per region. Credible
intervals (prob = 95%) for the initial number of individuals N0 per region compared to true
values (in red) computed according to the distribution in eq. (37) with the RSS geolocation model
and uniform prior.
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Figure 21 Credible intervals for the OD matrix of the number of individuals Nnet
t per region.

Credible intervals (prob = 95%) for the OD matrix of number of individuals N̄net
t per region

detected by the network compared to true values (in red) computed according to the distribution
in eq. (21) using the RSS geolocation model with uniform prior.
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Figure 22 Credible intervals for the initial number of individuals N0 per region. Credible
intervals (prob = 95%) for the initial number of individuals N0 per region compared to true
values (in red) computed according to the whole module integration using the RSS geolocation
model with uniform prior and the beta negative binomial inference model.
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Figure 23 Credible intervals for the initial number of individuals N0 per region. Credible
intervals (prob = 95%) for the initial number of individuals N0 per region compared to true
values (in red) computed according to the whole module integration using the RSS geolocation
model with uniform prior and the negative binomial inference model.
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Figure 24 Credible intervals for the initial number of individuals N0 per region. Credible
intervals (prob = 95%) for the initial number of individuals N0 per region compared to true
values (in red) computed according to the whole module integration using the RSS geolocation
model with uniform prior and the beta negative binomial state process inference model.
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Figure 25 [Animation] Credible intervals for the number of individuals Nt per region using the
RSS geolocation model with uniform prior and the beta negative binomial inference model.
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Figure 26 Credible intervals for the OD matrix. Credible intervals (prob = 95%) for OD matrix
compared to true values (in red) computed according to the whole module integration with the
RSS geolocation model with uniform prior and the beta negative binomial with rbreg = 0 and
cvreg = 0.01.



Salgado et al. Page 57 of 57

1 2 3 4 5 6 7 8 9 10

1
2

3
4

5
6

7
8

9
10

0 250 500 750 0 250 500 750 0 250 500 750 0 250 500 750 0 250 500 750 0 250 500 750 0 250 500 750 0 250 500 750 0 250 500 750 0 250 500 750

0
25
50
75

0

40

80

120

0
50

100
150
200

0
20
40
60
80

0

50

100

150

0
20
40
60

0

50

100

150

0

20

40

0
30
60
90

120

0
25
50
75

100

time (s)

N

Figure 27 Credible intervals for the OD matrix. Credible intervals (prob = 95%) for OD matrix
compared to true values (in red) computed according to the whole module integration with the
RSS geolocation model with uniform prior and the beta negative binomial with rbreg = 0.20 and
cvreg = 0.20.

Additional Files
Additional file 1 — Supplementary material

The pdf file entitled “Supplementary material for ’An end-to-end statistical process with mobile network data for

Official Statistics’” contains extra details about the computation carried out in the main text. Source code for these

computations can be visited in the URL specified in the declaration section.




