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1 Introduction

1.1 The political Violence Early-Warning System (ViEWS)

Knowing the dire consequences of armed conflict, preventing and containing future conflicts are high on
policy-makers’ agenda. Early action, however, requires early warning (World Bank Group and United
Nations, 2017). Moreover, such warnings must come in a form that prevents us from forgetting about
crises that already exist and persist. With a systematic and objective understanding of when, where, and
for how long future conflicts will last, as well as how lethal they will be, the international community
can come together to make timely and evidence-based strategic decisions to prevent or mitigate future
conflicts, engage in diplomacy efforts, and allocate resources where most needed. This is what the political
Violence Early-Warning System (ViEWS) (Hegre et al., 2021, http://viewsforecasting.org) offers.

A number of quantitative early-warning systems have recently been developed and are running with regular
updates of their risk assessments, ViEWS is however by far the most comprehensive and ambitious of such
systems.1 It is an early-warning system at the frontier of research that provides monthly forecasts of
impending violence 1–36 months into the future, at two levels of analysis, and for each of three different
types of political violence. The system is based on well-established academic research on the causes and
correlates of conflict, and consequently draws on a variety of predictors. Moreover, the system only makes
use of publicly available data in order to allow for maximum transparency, further ensured by conducting
– and publishing – continuous evaluations of its predictive performance (see e.g. Hegre et al., 2019; Hegre
et al., 2021).2

1Prominent examples are the Early Warning Project https://earlywarningproject.ushmm.org; the Atrocity Forecasting
project https://politicsir.cass.anu.edu.au/research/projects/atrocity-forecasting; the Water, Peace and Security
project https://waterpeacesecurity.org/info/methodology).

2In the version of the prediction model presented here, we include data from Political Risk Services which is not publicly
available. We will remove these data when finalizing the continuously updated version of the model.
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ViEWS has been publishing monthly updates of its forecasts for all of Africa since July 2018 as part of a
research project funded by the European Research Council and Uppsala University. In 2021, a separate
instance of the system was developed with funding from UN ESCWA that expanded the geographic scope
to the Middle East. As such, it covers countries that not only account for about half of the global
population as of 2022, but which have been the location of about 90% of the conflict-related fatalities
across the globe over the past 20 years. With funding from the GRSA fund at the UK FCDO and
other sources, a third iteration of the ViEWS system was developed over 2021–2022 using the expanded
scope from the ESCWA development and a new set of models that allows the system to progress from
offering dichotomous (conflict/no conflict) predictions to also forecasting the number of fatalities expected
in impending conflicts. Being able to predict not only whether a certain threshold of fatalities will be
reached, but the number of fatalities expected, has significantly pushed the scientific envelope, and will
provide policy-makers and researchers with the ability to quantify the potential impact and intensity of
conflicts.

1.2 The value of – and challenge in – using a continuous prediction target

While the dichotomous conflict/no conflict forecasts that early-warning systems – including ViEWS – have
relied upon to date have been a major contribution to researchers and policy-makers alike, the limitation of
whether violence will exceed a given threshold of violence or not results in an unfortunate loss of valuable
information. If an alert threshold is set high (e.g. at 500 fatalities per month), focus will be on high-
impact cases and shift attention away from cases that are less serious but not negligible, such as recent
simmering conflicts in Tunisia, Kenya, and Saudi Arabia. From a methodological point of view, a high
threshold also means there are fewer cases of violence to learn from, hurting the precision of prediction
models. If the threshold is set low (e.g. at 25 per year), the models have numerous cases to learn from, but
the applicable cases will not distinguish between relatively minor incidents like the ones mentioned above
and major conflagrations such as the Syrian civil war and the genocide in Rwanda; all conflicts with a
high probability of exceeding 25 deaths in a month will receive the same level of risk alert. Moreover, the
indirect impacts of wars depend not only on the presence and length of violence, but are also proportional
to the number of people killed in fighting (Ghobarah, Huth, and Russett, 2004).

Refining an early-warning system to indicate whether a future conflict will cause e.g. 100, 1000, or 10,000
deaths is, however, a challenging task and mainly the answer as to why this has not been embarked upon
before. This was well illustrated by the insightful contributions to the conflict prediction competition
hosted by ViEWS in 2020, in which the common denominator amongst the competing research teams was
a difficulty to perform better than predicting ‘no change from last period’ (Hegre, Vesco, and Colaresi,
2022; Vesco et al., 2022). Discussed at length in Section 2, the reason behind this predominantly concerns
the distribution of the number of fatalities in past conflicts: for a large portion of the country-months
over 1990-2020, the Uppsala Conflict Data Program (UCDP) recorded no violence at all; in about half of
the remaining months, more than 25 fatalities were recorded; and in about 100 country-months, the more
than 2,500 people were killed. On 11 occasions – in Iraq, Syria, Ethiopia and Eritrea—the conflicts took
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more than 10,000 lives in a single month.3

Most statistical models are ill-equipped to model such distributions. Building on the research carried out
by the ViEWS project and others over recent years, this has however now become feasible.

1.3 Structure of the paper

In this paper, we present the result of embarking upon the endeavor above: a production-level forecasting
model that predicts the number of fatalities in impending conflict 1–36 months into the future, at two
levels of analysis, and for each of three different types of political violence. We start with an overview
of the dependent variable and a deeper discussion of the historic distribution of fatalities, after which we
present our approach to predicting the three outcomes. We describe the constituent models informing the
forecasts, the ensembling techniques that allow us to draw upon the strengths of each of the constituent
models when producing the final forecasts, and we detail our calibration procedures. In Section 5, we
present the true forecasts from the prediction model and offer some tools for interpretation of the results.
Section 6 presents an evaluation of the predictive performance of the model.

2 The dependent variable

The outcome that the model predicts is armed conflict as defined and compiled by the Uppsala Conflict
Data Program (UCDP, Gleditsch et al., 2002; Sundberg and Melander, 2013; Pettersson et al., 2021; Hegre
et al., 2020). The UCDP collects data on three types of conflict (see https://www.pcr.uu.se/research/
ucdp/definitions/):

State-based (sb) conflict The use of armed conflict over either government or territory between armed
actors in which at least one is a government of a state.

Non-state (ns) conflict The use of armed force between two or more organised armed groups, neither
of which is a government of a state.

One sided (os) conflict The deliberate use of armed force by the government of a state or by a formally
organised group against civilians.

The UCDP provides estimates for the number of persons killed in each of these conflict types for each of
the conflict events they can document. We aggregate the fatalities across events into monthly sums, for
countries and for the PRIO-GRID cell structure which divides the world into 0.5x0.5 decimal degree grids
(Tollefsen, Strand, and Buhaug, 2012). We restrict forecasts to Africa and the Middle East.

3Had we included cases of genocide or wars before 1990 in this tabulation, we would have seen even more of these extremely
violent events.
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Figure 1. Actual fatalities in Africa and Middle East, state-based conflict

(a) January 2018 (b) June 2018

(c) December 2018 (d) December 2020

Note: The 10 countries with the most fatalities over the Jan 1990 to December 2020 period globally are marked off
with thick black borders.
Source: https://ucdp.uu.se; Pettersson et al. (2021) and Hegre et al. (2020)

In this report, we will focus on forecasts for state-based conflict. This type of violence is the most frequent
and deadly of the three UCDP categories, and the other two types frequently occur in the context of state-
based violence. To that end, forecasts for state-based conflict often function as a forecast for the other
two types. However, the forecasting system for state-based conflict is an excellent template for forecasting
the other types, all the UCDP conflict data are available, and it is not much effort to implement similar
models for the other types or even a combination of them.
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Figure 2. A challenge for forecasting models: The distribution of the outcome variables

(a) 1990–2022 (b) 2018–2022

Note: Kernel density plots for all country-months with non-zero fatality counts, showing the complete period
1990–2022 as well as 2018–2022. The vertical lines show the mean (non-logged) fatality counts for the non-zero
observations.
Source: UCDP GED, 2022

3 The historical distribution of fatalities

3.1 Country (cm) level

Figure 1 shows the recorded number of fatalities at the country level in map form for four selected months.
The 10 countries with the most fatalities over the 1989–2020 period globally are marked off with thick
black borders. Six of these are in the Africa and Middle East regions.4

The outcome variable has a distribution that is challenging to forecast. Most observations between 1990
and 2020 are zeros (no conflict fatalities): at the country-month (cm) level, 87.5% of the observations are
zeros, and at the PRIO-GRID month (pgm) level, 99.6% are zeros.

In addition to this ‘zero inflation’, the distribution of non-zero death counts is heavily right-skewed. Figure
2 shows a density plot of the distribution of fatality counts for all three types of violence, restricted to
non-zero observations. The x axes are in log form for both sub-figures.

Over the 1990–2020 period, there were 8,700 country-months with state-based conflict. The median
number of fatalities was 28 and the mean 173. We have marked off the (non-logged) means for non-zero
observations with vertical dashed lines. As these descriptive statistics and the figures show, the distribution

4For state-based conflict, the 10 most fatal conflict countries were pre-1993 Ethiopia, post-1993 Ethiopia, pre-2011 Sudan,
Iraq, Somalia, Sri Lanka, Afghanistan,Pakistan, Syria, and India. The top 10 countries for non-state violence are: Brazil,
Mexico, Ethiopia, Sudan, Nigeria, Somalia, Congo (DRC), Libya, Syria, and India. The top 10 countries for one-sided
violence are: Liberia, Sudan, Iraq, Nigeria, Bosnia and Herzegovina, Afghanistan, Rwanda, Congo(DRC), Syria, and India.
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Figure 3. Conflict breeds conflict: How fatality counts in one month for a country relates to
fatality counts for the preceding month

(a) State based conflict (b) One sided conflict

Note: Scatter plot between conflict at t_1 and conflict at t for each type of conflict, 2018–2022. Observations are
jittered to show the frequency of observations with similar values.
Source: UCDP GED, 2022

of non-zero fatality counts is heavily right-skewed. In 87 out of the 8,700 country-months, more than 2,500
people were killed in battle-related events. In one month (Ethiopia in June 2000), the UCDP recorded that
more than 48,000 people died in a single month. The genocide in Rwanda is the most extreme observation
in our post-1989 dataset, with close to 500,000 people killed in one-sided violence within a few weeks.5

The large number of zero observations as well as extremely high fatality counts is one challenging charac-
teristic of the prediction problem. Another is that a large number of non-zero fatalities occur in the same
country or location in subsequent months. Figure 3 shows how the number of deaths in one month in a
country (vertical axis) relates to the number of deaths in the same country the month before (horizontal
axis). For readability, the figure is restricted to the three years in the test period (2018–2020). Most
non-zero observations follow another non-zero observation – a lagged dependent variable is a very strong
predictor that we include in all models presented below. In a good number of country-months, however,
fatality counts go from 0 to positive values, and even hundreds in the following month. Similarly, there are
a good number of cases where substantial violence is followed by no deaths the month after. Predicting
these spells of violence as well as when fatalities de-escalate to zero, is one of the most daunting tasks.

Figure A-3 shows the distribution of the fatality count variables (as in Figure 2) for all country-months
where there was at least one fatality the year before.

5These extreme observations are somewhat exaggerated due to a weakness in our current dataset: The UCDP recorded
48,000 fatalities at the border of Ethiopia and Eritrea in the period January–June 2000. They do not have sufficient source
material to identify the exact date of each violent event during this war, and code the violence as distributed across these
months. In our current aggregation procedure these fatalities are assigned to the last of these months. Similarly, the genocide
in Rwanda is assigned to May 1994 although the violence occurred over the April and May period. We have written a revised
aggregation procedure to handle this, and will update the data in the next iteration of this report.
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Figure 4. Time series for top 10 cumulative fatality countries vs all other countries, state-based
violence, centered moving average

Note: A three-month centered moving average means that the value shown for March 2016 is the average of fatalities
over the three-month period February–April 2016; the value for April 2016 the average for March–May, etc.
Source: UCDP GED, 2022

In combination, these distributional aspects mean that a very large fraction of the battle-related deaths
have occurred in a small number of countries. Figure 4 shows the number of fatalities per month for the 10
most deadly conflict countries over the past 30 years, as well as the total number of fatalities in all other
conflicts. We identified the 10 most deadly countries by summing up all fatalities by conflict sub-type.6

Figure 4 shows that the global total of state-based violence over the 1990–2020 period was dominated
by the Eritrean secessionist war (listed as in Ethiopia), Iraq (multiple wars from the first Gulf war and
onwards), Sri Lanka, Syria, and Afghanistan.7

Figure 5 shows the global total number of fatalities across all countries for the 1990–2022 period.

3.2 Geographical (pgm) level

Figure 6 shows where the UCDP recorded fatalities for four selected months in the test period (Pettersson
et al., 2021; Hegre et al., 2020). The fatality counts are aggregated to the total number of deaths in each
PRIO-GRID cell per month (see Tollefsen, Strand, and Buhaug, 2012, for a presentation of the PRIO grid).
Figure 7 shows the distribution of fatalities over these geographical cells, restricted to PRIO-GRID months
where there was at least one fatality. The distribution is even more right-skewed than for the country (cm)
level (Figure 2). The median number of fatalities lay between 1 and 3, but a sizeable proportion exceeds
100. Even though the PRIO-GRID cells are small, about 55x55km at the equator, Rwanda only occupies
seven such cells. Hence, the 1994 genocide (classified as one-sided violence by the UCDP) did not only
occur in a very short time span, but also in a very condensed area. In principle, forecasting models should

6We aggregated counts by country ID. Following Weidmann, Kuse, and Gleditsch (2010), some countries are assigned a
new distinct country IDs when its territory changes. For that reason, countries can appear multiple times in the figures.

7The spikes for Syria are due to an incorrect aggregation of annual data to individual months, to be corrected in the next
version of the report.
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Figure 5. Time series for fatalities for all countries, state-based conflict, 1990–2022

Source: UCDP GED, 2022

be able to make forecasts that incorporate such extreme events if possible.

Several current conflict hotspots are similarly concentrated. The recent violence in the Tigray province
occurs in only two PRIO-GRID cells, and that in Eastern DRC mainly affected a narrow, but densely
populated strip along the borders to Rwanda and Uganda. Still, even when geographically concentrated,
the fighting often spills over national borders, such as in the North of Nigeria and Cameroon, and in the
region straddling Mali, Burkina Faso, and Niger.

3.3 Summary of review of the outcome variables

It is clear from this discussion that the outcome we develop the model for has a very challenging distribu-
tion. Most observations are zeros, and on top of that the non-zero observations are highly right-skewed.
The really serious conflict occasions are fortunately quite rare. However, these rare instances are also the
ones that grab most attention, and by definition affect a large number of people. Accordingly, forecasting
models should be designed so that they are able to warn about these. In the section describing the cm
models below we discuss briefly how the models succeed in capturing the distribution described here,
including the rare events, to prepare for continued model development.

The descriptive statistics has also revealed some problems with the data we are currently using. These
are not really errors, but are due to using a simple procedure to treat known measurement uncertainty.
We have a solution to this that we will implement.
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Figure 6. Actual fatalities in Africa and Middle East, state-based conflict at PRIO-GRID
(pgm) level

(a) January 2018 (b) June 2018

(c) December 2018 (d) December 2020

Source: UCDP GED, 2020
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Figure 7. Actual fatalities in Africa and Middle East, state-based conflict at PRIO-GRID
(pgm) level

(a) 1990–2020 (b) 2018–2020

Note: Kernel density plots for all PRIO-GRID months with non-zero fatality counts, showing the complete period
1990–2022 as well as 2018–2022, the three-year period used for evaluation of forecasts.
Source: UCDP GED and UCDP Candidate, 2022, visualized by ViEWS

4 Generating the forecasts

The forecasting system is an ensemble or collection of a set of constituent models. We first describe the
constituent models, and then our approach to ensembling. The results from running these models are
shown in Section 6.

4.1 Constituent models

The team has developed a set of forecasting models at the cm and pgm levels. At the cm level, the current
setup explores 48 models. We have included more models than necessary in order to evaluate the relative
usefulness of the different algorithms we specify as well as the feature sets.

The 48 models are combinations of nine feature sets and ten different machine-learning algorithms. In the
figures and tables that follow, the models are labeled by their feature sets and their algorithms; e.g., the
model fat_conflicthistory_hurdle_xgb is a fatalities model using the conflict history feature set and
an XGB-based hurdle-regression algorithm.

Section 4.1.1 describes the feature sets at the country level in more detail, Section 4.1.2 the feature sets
at the geographical level, and Section 4.1.3 the machine-learning algorithms. We review the relative con-
tribution of the various algorithms and feature sets in Section 6.1.2.
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Table 1. Models at cm level: combinations of feature sets and algorithms

Algorithm
Feature set RF

(XGB)
RF
(Scikit)

GBM
(scikit)

XGB hist
GBM
(scikit)

LGB LGB/LGB
hurdle

RF/RF
hurdle

XGB/XGB
hurdle

Markov
GLM

Markov
RF

Baseline X
Conflict hist. X X X X X X X X X
Long conflict
hist.

X X

V-Dem X X X
WDI X X X
Topics X X X X
PRS X X X
Broad X X X
Greatest hits X X X
hh20 X X X X X X X X X X X
PCA all X
PCA topics X X
PCA V-Dem X
PCA WDI X

Source: ViEWS, 2022

4.1.1 cm-level feature sets

baseline is a very simple model with only five data columns (each column representing one feature): The
number of fatalities in the same country at t− 1, three ‘decay functions’ of time since there was at
least five fatalities in a single month, for each of the UCDP conflict types – state-based, one-sided,
or non-state conflict – and log population size (Hegre et al., 2020; Pettersson et al., 2021).8 The
features in the baseline are included in all the models described below. This ensures that all models
in the ensemble provides at least moderately good predictions, while guaranteeing diversity in feature
sets and modelling approaches.

conflicthistory is a collection of 28 variables that together map the conflict history of a country. The
features include lagged dependent variables for each conflict type as coded by the UCDP (state-
based, one-sided, or non-state) for up to each of the preceding six months, ‘decay functions’ of
time since conflict caused 5, 100, and 500 deaths in a month, for each type of violence, whether
ACLED (Raleigh et al., 2010) recorded similar violence, and whether there was recent violence in
any neighboring countries.

vdem includes about 60 features drawn from the Varieties of Democracy project (Coppedge et al., 2020)
as well as from World Development Indicators (WDI WorldBank, 2019), as well as the baseline
model features from the UCDP. The most important features are a number of conflict history lags
and some WDI features (see below). Among the Varieties of Democracy features, the most important
are indicators for horizontal and vertical accountability, clientilism, divided parliament control, and
indicators of exclusion/discrimination.

wdi is composed of about 40 features drawn from the WDI as well as some conflict history indicators.
Following the conflict history indicators, the most important predictors are indicators of migra-

8The ‘decay function’ is e−tsc/α where tsc is the number of months since five fatalities, and α a half-life parameter.
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tion and refugee population, military expenditure, international aid, total population, fertility, and
population growth.

Figure 8. The topic model of Mueller and Rauh (2020): Dominant topics in news coverage of
Burkina Faso, 2017

(a) Burkina Faso, January 2017 (b) Burkina Faso, April 2017

Source: Mueller and Rauh (2020)

topics has a number of features from Mueller and Rauh (2018), Mueller and Rauh (2020), and Mueller
and Rauh (2022). The features are constructed from 3.5 million newspaper articles that are processed
into 15 topics using Latent Dirichlet Allocation (Blei, Ng, and Jordan, 2003). In addition, the model
contains a set of conflict history features, population size, child mortality, and some democracy
features.

Figure 8 illustrates the topics for Burkina Faso. Blue topics are associated with a reduced risk of
subsequent armed conflict, whereas red topics signal an increased risk. Each topic has been assigned
a label in Mueller and Rauh (2020). Figure 8a shows the dominant topics in news covering the
country in January 2017. ‘Armed conflict’ is present in the news, but do not receive nearly as much
coverage as ‘Civilian life’ and ‘Competition and sports’. In April 2017 (8b), ‘Armed conflict’ is the
most important topic, followed by ‘Judiciary and abuses’ that also signals a risk of escalation.

PRS includes a number of features from the Political Risk Services (https://www.prsgroup.com), who
make available at a monthly basis a number of political and economic indicators as well as updated
risk assessments. Since the PRS data are not publicly available, they will not be part of a publicly
available ViEWS system, but they have been included here to explore the extent to which they could
potentially contribute to the forecasting performance (they make a discernible but very marginal
contribution).
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broad includes about 90 features taken from all the models described above. The most important features
are, as in all models, a set of lagged conflict variables. After these, net migration, fertility rates, and
a number of the Mueller & Rauh news topic features are the most important.

greatest_hits is a shortened version of the broad model, constructed by removing about 30 of the least
important features from the former.

hh20 is a further shortened version of the broad model that retains about 40 of the most important
features.

4.1.2 pgm-level feature sets

We have specified and trained a number of pgm models, and include most of them in the ensemble we
present below. Most models make use of the LightGBM gradient boosting model, either in standard or
hurdle-regression form. LightGBM is by far the most efficient algorithm that we have explored, greatly
facilitating the task of training models for 13,000 PRIO-GRID-cells across several hundred points in time,
across all 356 time-steps. The comparison done at the cm level indicates that the algorithm in general
performs at least as well as the other, much less efficient, algorithms.

baseline is a simple specification including the most important predictors of conflict in a grid-cell. First,
it includes information on the spatial and temporal proximity to conflict (any type of violence coded
by UCDP), as we know that conflicts tend to re-occur and are likely to cluster in space. Locations
that have a legacy of violence or are neighboring violent locations, are more likely to experience
conflict. In addition, we include information on population size, as the likelihood of violence is
increasing in densely populated locations (Raleigh and Hegre, 2009).

conflicthistory includes the baseline features as well as a dozen additional features more closely repre-
senting the conflict history of the geographical grid cell. To better be able to capture how previous,
intense violence affect the number of persons killed at a later point in time, we include decay func-
tions of time since at least 5, 25, 100, or 500 deaths in the same cell, for each of the three types of
UCDP organized violence.

natsoc includes the baseline as well as a number of natural and social geography features that are used
in the current ViEWS system (Hegre et al., 2019). Social geography features include information
on local poverty, distance to international borders, the capital or the nearest city, and exclusion of
local ethnic group from political power. Natural geography-related features include characteristics
of the local terrain (e.g. prevalence of mountains, pasture, urban, forest, etc.), distance to diamond
and oil deposits. Locations with high share of ethnic exclusion, diffused poverty, disconnected from
the centres of power, and close to lootable resources are more likely to experience conflict.

drought includes a number of drought and vulnerability features in addition to the baseline. The model
includes the SPEI Index as a proxy for drought (Vicente-Serrano, Beguería, and López-Moreno,
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2010), information on the local crops’ growing season from the MIRCA dataset (Portmann, Siebert,
and Döll, 2010) and data on the crops’ harvest and yield from Mapspam (International Food Policy
Research Institute, 2019). Local drought during the local crops’ growing season may increase the risk
of conflict in vulnerable communities. To account for the role of societal vulnerability in mediating
the effect of climate shocks on the risk of conflict, the drought model also encompasses information
on economic conditions, the level of development, the degree of ethnic exclusion, population size,
and dependence to agriculture – all factors that have been shown to condition the climate impacts
on societies and their capacity to respond to climate anomalies.

protest includes 45 features capturing the recent history of protests at the local level based on data
from the Armed Conflict Location & Event Data Project (ACLED) (Raleigh et al., 2010). The
model distinguishes between events based on the intensity of violence as well as the actors involved.
Hence, additional four types of different protest events are included, i.e. peaceful protests, protests
with low-level intervention, protests with excessive force against protesters and protests with violent
behavior by demonstrators. The protest event counts are normalised by dividing them by grid cell
population (Tollefsen, 2012). Multiple transformations are performed to capture the spatial and
temporal variation of the different protest types. Temporal proximity to protest events taking place
in first- and second-order neighbouring grid cells are the most important features to predict the
count of fatalities for all steps ahead. Protest events that include excessive violence are thereby
particularly influential.

confhist is a conflict history model capturing both time and space proximity to past conflict, using conflict
data at the sub-national level sourced from the UCDP-GED, the geographically disaggregated version
of UCDP (Croicu and Sundberg, 2015). The main features include various temporal and spatial lags
of the count of fatalities by grid-cell. The moving average and sum of fatalities over the past 6
months are the most important features to predict the count of fatalities one month ahead, although
their importance decreases over time. Expectedly, the moving sum and average of fatalities over
the past 36 and 12 months are the most relevant features to predict further ahead into the future
(s=12,24,36 ). The spatial lag of fatalities is also an important feature to predict the number of
deaths from state-based conflicts, in line with findings from the empirical literature, suggesting that
conflicts cluster in space (Buhaug and Gleditsch, 2008). The temporal and spatial proximity to other
forms of violence (os,ns) is less relevant to predict sb fatalities, even though its importance tends to
increase along the forecasting horizon.

xgb_actor_confhist is a model combining the conflict history model described above with features
relating to rebel groups (actors) present in both the grid-cell and in nearby grid-cells. These features
attempt to extract agency and structure of conflict processes and include the count of armed groups
involved in conflicts against the government and against each other, and information on the level
of conflict intensity (fatalities and number of battles) carried out by the most intense and of the
average actor in the group. Measures of longevity and escalation/de-escalation for each group are
also included - count of actors existing for two months in a row and surviving for a year in the
grid-cell, cumulative intensities over 12 months, as well as number of actors appearing, disappearing,
escalating and de-escalating in the current month. Measures for nearby actor behavior (in the queen-
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contiguity spatial-lag of each cell / 3x3 convolution space) are included as well. The data is described
in Croicu (2019) and has, as principal novelty, that it includes potential rebel groups as well as armed
actors that never escalated (groups with very limited armed activity, below the standard 25-battle
related deaths threshold). In addition, the model includes some basic structural geography measures
(GDP, travel time to nearest town, agricultural density and population are included). The model is
estimated using extreme gradient boosting with a gradient histogram approximation for performance
(Chen and Guestrin, 2016). Hyperparameters are tuned using a simple genetic algorithm run for 20
models for 20 generations on the calibration set.

conflict_tree_lags is a conflict model employing spatial lags of the conflict variables computed using a
tree-based method instead of the kernel-based convolution used in the confhist and xgb_actor_confhist
models. Convolution-based lags compute sums over a finite-sized (usually 3×3 cells) kernel. The size
of the kernel, and therefore the range at which one event can be modelled as influencing another,
is limited by the computational effort required to compute kernel sums for every cell. The tree, in
contrast, allows distance-weighted sums to be computed approximately over the whole grid. Grid
cells are first placed into a hierarchy with individual cells forming the highest level, groups of four
cells the level below, groups of sixteen cells the level below that, and so on. For a given cell at which
the sum is to be computed, sums over nearby partner cells are computed directly, but more distant
partners are aggregated into lower-level tree nodes. An approximate sum with any required distance
weighting over the whole grid can then be efficiently computed for every grid cell. The tree_lags
model employs lags of the three conflict variables computed in this fashion with distance−1 and
distance−2 weightings.

conflict_sptime_dist is a model that includes a unified measure of proximity to violence in both space
and time, called spacetime. Spacetime allows to assign different weights to the temporal and spatial
dimension. Specifically, for every grid cell at every time-step, the spacetime distance s to the nearest
past conflict event is computed, where for a grid cell located at (xi, yi) at a time-step ti and a past
conflict event at (xe, ye, te),

s2 = (xi − xe)
2 + (yi − ye)

2 + ν2(ti − te)
2 (1)

with the constraint that ti − te ≥ 0. ν is a scaling factor with the physical dimensions of velocity
which allows the time difference to be added to the spatial distance. There is no obvious ‘best´
value of ν, and consequently the sptime_dist model includes features where space-time distances
are computed with ν = 10 (which has the effect of stretching the time axis and thereby privileging
more recent events), 1, and 0.01 (which compresses the time axis and makes it more likely that an
event in the distant past will yield the minimum value of s for a given (xi, yi, ti).

broad is a model that selects the most important features from each of the models above, based on a
review of feature importances for each of them. In addition to the baseline features, the model
includes three features from the sptime feature set, two from the tree_lags model, distances to
borders, capitals, cities, and diamond deposits, local poverty, and four features from the drought
model.
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4.1.3 Algorithms

We have explored a number of algorithms to relate the feature sets to the outcome we seek to predict.
Most of the models we end up using are tree-based models. With the exception of the GLM Markov
model, none of the generalized linear models we tried yielded good performance. We also had limited
success with simple neural network models.9

Random forests XGBRFRegressor(n_estimators=300) or scikit’s RandomForestRegressor(n_estimators=200),
implementing the Random Forest (Breiman, 2001) algorithm, an ensemble of decision trees, with
each tree trained on a subset of features and bootstrapped data – with the aggregate ensemble
reducing.

Gradient boosting models scikit’s GradientBoostingRegressor() Gradient Boosting Regressors (GBR)
are another ensemble method improving decision trees sequentially by training each iteration on the
residual of the past iteration. The algorithm starts by assigning equal weights to all data points. It
then iteratively changes the weights by increasing the weight assigned to difficult observations that
are misclassified, and lowering the weight for data points that are easy to classify or are correctly
classified.

’Extreme’ gradient boosting XGBRegressor(n_estimators=100, learning_rate = 0.05). The model is
estimated using extreme gradient boosting (Chen and Guestrin, 2016). We use the XGBoost imple-
mentation, and performed an ’early-stopping’ routine to identify the optimal number of estimators
and learning rate parameters.

Light gradient boosting LightGBM (LGBMRegressor, n_estimators=100) is another gradient boost-
ing method based on decision trees to increase the efficiency of the model and reduce memory usage.
It uses novel techniques (One Side Sampling and Exclusive Feature Bundling) to overcome the lim-
itations of histogram-based algorithm. The Light Gradient Boosting works by retaining instances
that with larger gradients(those that contain more information but are under-trained) and randomly
dropping data-points with small gradients. This leads to a more accurate estimation than uniformly
random sampling.

Hurdle models We have also explored a set of ‘hurdle models’. As indicated by the review of the
prediction outcome above, most of the observations have no fatalities, and the distribution of the
non-zero observations are highly right-skewed. There are reasons to think that the data-generating
process that lead to whether a country or a grid cell having any fatalities at all is quite different
from the one that lead to subsequent fatalities. Hurdle models take this into account by dividing the
outcome into two variables, a dichotomous variable for whether there was non-zero fatalities or not,
and the log count of fatalities if there was at least one fatality. The model then trains a classifier for
the zero/non-zero distinction, and a regressor for the non-zero observations. At the predict stage,
the predicted number of fatalities is the product of the probability of non-zero observations, and

9We expect more advanced long-short memory and convolutional recurrent neural network models to be effective for the
pgm level, but we have not been able to test these as currently are lacking access to a well-specified GPU-based computer.
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the expected number of fatalities given there is at least one, conditional on the predictors. We have
explored a number of variants of the hurdle models, using classifier and regression versions of the
tree-based algorithms described above.10

Markov_glm and Markov_rf Markov models are a more sophisticated formulation of the hurdle-
model idea that different models do well in different situations. The models use an observed Markov
modeling approach with four different latent states which produce fatalities, and where the forecast
of fatalities is conditional on the likelihood of the conflict state. The four conflict states used are the
same as in Randahl and Vegelius (2022), that is, ‘peace’, ‘escalation’, ‘de-escalation’, and ‘conflict’.
Transitions between states are restricted such that each state only has two possible future states.
The transitions allowed are from peace to peace and to escalation, from escalation to conflict and
to deescalation, from deescalation to peace and to escalation, and from conflict to conflict and to
deescalation. The escalation and deescalation states are thus transient, as they do not allow transi-
tions to themselves. Transitions between states are modelled as a binary logistic regression model,
and the log number of fatalities conditional on the latent states are modelled using OLS regression.
The Markov_glm version use logistic and linear regression models, and the Markov_rf models
the transition between states using a random forest classifier, and the log number of fatalities condi-
tional on the latent states using a random forest regressor. For more details on the Markov modeling
approach, see Randahl and Vegelius (2022).

4.2 Ensembling – using the ‘wisdom of the crowd’

No statistical or machine-learning model or algorithm can perfectly learn the patterns of behavior that
link some observable predictors to subsequent observations of the number of fatalities in war. Building on
a variety of theoretical and methodological perspectives – the ‘wisdom of the crowd’ – clearly yields the
best foundation for good decisions and high-quality forecasts (Tetlock, 2005). The greater the variance
of adequate models available, the better a forecasting and decision-making system performs (Page, 2007).
Ensembling – grouping of diverse forecasting models – also work as a means to smooth over problems
(Armstrong, Green, and Graefe, 2015). Following the approach in ViEWS (Hegre et al., 2019), we use
ensembling of constituent models to aggregate insights from various models, allowing a variety of modeling
algorithms and feature sets, and applying state-of-the-art model weighting algorithms (Sivanandam and
Deepa, 2008; Scrucca et al., 2013; Montgomery, Hollenbach, and Ward, 2012).

The default ensemble algorithm is just the equally weighted mean. However, it is clear from the evalu-
ation of results below that some models perform better than others, and we should be able to improve
performance by giving these models more weight in our ensembles. For the cm level, we have developed
an algorithm to learn these weights from the data. To do this, we split the data into three periods. The
first period, the ‘training period’, include the years 1990–2012. We train the constituent models described
above on data for this period, and predict for the ‘calibration period’; 2013–2016. Our ensemble weighting

10Our hurdle model implementation is based on code developed by Geoff Hurdock: https://geoffruddock.com/
building-a-hurdle-regression-estimator-in-scikit-learn/

19

https://geoffruddock.com/building-a-hurdle-regression-estimator-in-scikit-learn/
https://geoffruddock.com/building-a-hurdle-regression-estimator-in-scikit-learn/


and calibration model use these predictions as well as data for the true outcome for the calibration period
to obtain weights and calibration parameters. We then retrain all the constituent models for the 1990–
2016 period and generate predictions for the 2017–2020 period, and apply the weights and calibration
parameters to produce ensemble forecasts for that period. The forecasts for the true future will use the
2017–2020 period as calibration period, and generate ensemble predictions for the 2022-2024 period.

Our model weights are obtained using a genetic algorithm (Sivanandam and Deepa, 2008; Russell and
Norvig, 2020). These optimize a user-defined performance metric in the calibration data by letting a
population of random model weights evolve over a large number of generations to find optimal weights.
Genetic algorithms provide a fast, flexible, and intuitive way to optimize the performance metric when
the inputs are high-dimensional or when there are complex restrictions on the available inputs.

The genetic ensembling algorithm, as implemented, works like this: 100 random ensembles are chosen
with a random set of weights (genes), under the sole condition that the sum of those weights is between
0.5 and 3. Each of the 100 ensembles are then computed using the assigned weights and then evaluated
using a mean squared error fitness function (1/emse) against the data in the calibration period. Pairs
of the ensembles are then sampled through a weighted sampling procedure based on the fitness scores.
These pairs are recombined in a simulation of genetic reproduction - a random subset of weights from one
ensemble in the pair is combined with the remaining weights from the other ensemble in the pair. Then,
with a probability of .2, a random subset of weights from the resulting ensemble is replaced with random
weights. 100 such recombination/mutation processes are carried out, leading to 100 new organisms that
form a new generation, to be put, again, through the same process as above11. This is repeated 500 times
(generations), with the best ensembles from the last (500th) generation being used.

4.3 Calibration

Predictions should ideally have roughly the same distributions as the observed outcome. Given the dis-
tribution of the outcome variable (Figures 2 and 7), few algorithms would get this right without post-
prediction calibration. In particular, models tend to yield distributions with smaller variance than the
outcome, reducing our ability to correctly predict the total number of fatalities. Moreover, they tend to
have means that are lower than the true mean, and some models produce negative values even though
these do not exist in the training data.

We have explored two ways to calibrate predictions The first is to multiply the predicted number of
fatalities with the constant that gives the same variance (in the calibration partition) as the outcome
– in practice, this is equivalent to estimating a no-constant linear regression model with the outcome
in the calibration partition as the dependent variable and the prediction as the independent variable.
The estimated parameter is in most cases larger than 1, expanding the variance of the predictions and

11As a complication, to improve performance, at each generation, the 10 best models of the previous generations are
"spared and cloned", i.e. preserved intact, without recombination and mutation for the next generation. The ten worst
performers in the mutation and recombination steps are discarded, so that the population of ensembles remains 100.
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Figure 9. GAM calibration function, fat_topics_histgbm model (left) and fat_hh20_xgb
model (right), s = 3

Source: ViEWS, 2022

increasing the mean. We estimate this calibration model separately for each constituent model and each
step, and apply the calibration parameter (the β coefficient in the OLS model) to the predictions for the
test partition. We also explored including an intercept in the calibration model. This, however, in most
cases yields non-zero predictions for a majority of the cases where the true outcome is zero, significantly
hurting performance. Without an intercept term, however, the calibration works poorly for models like
the XGBoost model that can yield negative predictions – multiplying a negative prediction with a number
larger than one obviously does not help calibration.

To counter theses challenges, we have moved to use a generalized additive linear model (a GAM), using
the PYGAM package (Servén D., 2020). GAM models fit the relationship between the dependent and
independent variables as a very flexible function. To avoid overfitting, we constrained the model to yield
calibrated predictions that are monotonically increasing in the non-calibrated predictions – if the original
model ranks one case higher than another, the calibrated model also ranks it as as least as high. We set
the parameters of the function so that the calibrated transformation is quite smooth, retaining most of
the original prediction.

This model was estimated separately for each constituent model and for each step. Figure 9 illustrates
how the function works. The calibration function works well, typically decreasing MSE by about 10%
relative to the uncalibrated predictions, mostly removes zero predictions, and increases the variance.

Figure 9 shows two example calibrations. The y axis shows the calibrated predicted number of fatalities
as a function of the original prediction (x axis). In the case of the fat_topics_histgbm model (left),
the GAM function does not alter the original predictions much except for predictions above 4 (about 50
deaths), but pull the remaining predictions considerably upwards. In the case of fat_hh20_xgb model
(right), which yields a number of large negative predictions, all negative predictions are calibrated to zero,
and the remaining predictions are mostly unchanged.
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The genetic algorithm can in principle yield weights that sum to less than or more than one. This, then,
serves as a second calibration step.

4.3.1 Calibration at the pgm level

The issue of calibration is particularly acute for the pgm models. Africa and the Middle East together
comprise approximately 13,000 PRIOGRID cells, which when multiplied by the 356 time – steps under
consideration here, yields around five million units of analysis. In any of the conflict datasets, the vast
majority of values (i.e. the numbers of fatalities) associated with these units of analysis are zero.

The imbalance between the numbers of zero and non-zero data points in problems like conflict prediction
is sometimes redressed by randomly discarding a (possibly very large) fraction of the zero-valued units of
analysis, so that the regression algorithms which search for patterns in the data are exposed to more equal
numbers of zero and non-zero values. This is known as downsampling and the hope in doing this is that
the algorithms are not swamped by zero values and do not, therefore, tend to simply predict zeros or very
small values everywhere. Downsampling also reduces the runtime of fitting procedures, since algorithms
have less data to deal with.

We examined the effect of downsampling by discarding between 70 and 98 per cent of the zero-valued
data points. Very large discard fractions significantly worsened predictive performance and more moder-
ate fractions yielded no appreciable performance improvement, while runtimes required to dispense with
downsampling entirely were not prohibitive. We therefore abandoned downsampling as a data-engineering
strategy.

However, with or without moderate downsampling, the predictive performance of the random forest-,
LGBM- and gradient-boosting algorithms were all quite poor, as measured by examining MSE values, or
more subjectively by comparing maps of predictions from the test partition with observations from the
same timestep.

The clearest problem is that, while able to predict the presence or absence of conflict in roughly the correct
geographic locations (although with some spread around the locations of observed conflict events), the
numbers of predicted fatalities were almost always very small. This is indicative of a normalisation or
calibration problem, as described in the previous section.

The best solution to this problem might be to use another evaluation metric than MSE at the pgm level.
The pEMDiv metric (Greene et al., 2019) is the best candidate we are aware of. In future iterations of this
modeling exercise, we will use a variant of this metric both to evaluate the model system and to optimize
it.

Another issue is that it is desirable that the sum of predicted fatalities at the pgm level that make up a
given country are similar to the predicted fatalities at the cm level. In the modeling system, we calibrate
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the predictions along this line of logic (see below). The MSE scores we report, then, have a different
interpretation – they should be read as ranking models in terms of the model’s ability to capture the
distribution of the total fatalities suggested by the cm ensemble.

5 True forecasts for April 2022–March 2025

Figure 10 shows the predicted number of fatalities for all countries in the Africa and Middle East regions
in map form. The forecasts were produced in May 2022 based on data up to and including March 2022.
Figure 11 shows the total number of predicted fatalities over the next 12 and 36 months for these countries,
and 12 presents the distribution of fatalities over the most affected conflict countries.

The model suggests conflict will remain extremely violent in Yemen, with up to about 1000 deaths from
state-based violence every month over the next three years. Conflict will also remain intense in Nigeria,
Somalia, and Syria, and to a somewhat lesser extent in Mali, Burkina Faso, and DR Congo.

Figure 13d shows what drives these forecasts. Most importantly, past conflict history drives the forecasts
for the most violent countries listed above (Figure 13a and 13b). This is accentuated in many countries by
a combination of poverty and non-democratic institutions (in particular, in Central African Republic and
Somalia). Other countries with relatively high risk of fatalities despite having limited amounts of recent
violence are Guinea, Sierra Leone, South Sudan, Zambia, and Zimbabwe.

5.1 Surrogate models to understand the key drivers of armed conflict

To interpret the ensemble model predictions we have developed a set of ‘surrogate models’ (Molnar, 2021).
These models link the ensemble predictions to a small number of input features by means of a simple
model. In our implementation, we have used generalized additive models (GAMs) to aid interpretation.
These are estimated using the ensemble predictions for the test partition for a given step as dependent
variable, and the input variable appropriately time-shifted as independent variable. Figure 14 shows the
results for two of these models, for two steps. Figure 14a shows how the (log) number of fatalities predicted
six months into the future relate to the (log) number of deaths in sb conflict six months earlier, i.e. the
most recent month of data informing the surrogate models presented here. This variable on its own is
sufficient to explain about 91% of the prediction. Figure 14b shows the same for the case where we seek
to predict 36 months into the future. Still, this variable accounts for about 87% of the variance in the
ensemble predictions.

Figures 14c and 14d shows the relationship between the ensemble predictions 6 and 36 months into the
future, as functions of the ‘liberal democracy’ score from V-Dem (Coppedge et al., 2020) and infant
mortality rate from the World Development indicators (WorldBank, 2019), which we see as a proxy for
the extent of poverty and under-development in the country. This model ignores conflict history, and is
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Figure 10. Prediction maps for the future, based on data up to and including March 2022

(a) June 2022 (s = 3) (b) April 2023 (s = 12)

(c) March 2024 (s = 24) (d) March 2025 (s = 36)

Note: Forecasts for 3, 12, 24, and 36 months into the future relative to the last month of data, March 2022.
Source: ViEWS, 2022
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Figure 11. Predicted total fatalities over the next 12/36 months, all countries

Note: Predicted total fatalities over the next 12 and 36 months relative to the last month of data, March 2022.
Source: ViEWS, 2022
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Figure 12. Predicted share of total fatalities over the next 12/36 months amongst the most
affected conflict countries

Note: Predicted share of total predicted fatalities in the most important countries over the next 12/36 months,
relative to the last month of data (March 2022).
Source: ViEWS, 2022

then able to account for about 17% of the variance in the predicted number of fatalities. The relationships
are in line with what has been found in earlier studies (see Hegre, 2014; Hegre, 2018, for reviews): The
risk of fatalities is increasing in infant mortality rate, and has an inverted-U relationship to the level of
democracy. The predicted number of fatalities is highest for political systems that are rated with 0.2 on the
liberal democracy score, the current level in Ethiopia, for instance, and lower for more or less democratic
political systems. Countries that are both very poor and are partial democracies are the most at risk of
intense political violence, according to the forecasting model.

6 Evaluation of predictive performance

In this section, we review the predictive performance of the models at the cm and pgm level, including
comparing the relative contribution of the various methodological alternatives explored in the project.

6.1 cm level

6.1.1 Constituent models

Figure 15 shows Mean Squared Error (MSE) for the entire range of constituent models explored for the
project, as well as for the unweighted ensemble, as a heatmap, for all steps, for the calibration period
2013–2016. Models are sorted according to the feature sets that go into them, with the ensemble at the
bottom. Blue color corresponds to low MSE and good performance, red color to high MSE and poor
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Figure 13. Surrogate model prediction maps for the future, based on data up to and including
January 2022

(a) Conflict history, July 2022 (s = 6) (b) Conflict history, January 2025 (s = 36)

(c) Democracy and infant mortality, July 2022 (s = 6) (d) Democracy and infant mortality, January 2025 (s = 36)

Source: ViEWS, 2022

27



Figure 14. Surrogate models, test partition, all countries globally

(a) Conflict history, s = 6 (b) Conflict history, s = 36

(c) Democracy and infant mortality rate, s = 6 (d) Democracy and infant mortality rate, s = 36

Source: ViEWS, 2022
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performance. Obviously, MSE increases the further into the future we seek to forecast: Mean squared
error is typically 2–3 times higher at step 36 than at step 1.

Figure 15. MSE, calibration partition

Source: ViEWS, 2022

Table 2 shows MSE for the test partition in table form for selected steps.

Figure A-1 shows MSE for the fraction of the test partition that had actual zeros (top) as well as actual
non-zeros (bottom), to further explore the relative strengths and weaknesses of the models. For the most
part, these plots confirm the picture from MSE overall, with some interesting exceptions. The random-
forest based Markov model yields a high MSE for the zero cases, but is very precise for predicting the
non-zeros, for instance.

Figure 16 looks at model performance from a different angle: It shows how much the MSE for an unweighted
ensemble changes if the model is removed from this ensemble. Cells have blue color when the ensemble
deteriorates if the model is removed for that step, and red color if the ensemble improves. Seven of the
conflict history models contribute positively the ensemble for all steps, three of the topics models, one of
the PRS models. Only one of the ’hh20’ models is contributing. Models that are exclusively based on
V-Dem and WDI features mostly hurt the ensemble, as do most of the ´broad’ and ‘greatest hits’ models.

Finally, Table 3 shows MSE for the cases that actually had non-zero fatality counts in the 2018–20 period.
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Figure 16. Ablation MSE: Changes to the MSE of an unweighted ensemble, calibration
partition, if the model is removed from the ensemble.

Note: Blue color/negative values means the MSE of the ensemble is lower/better if the model is kept in the
ensemble, red color/positive values that the MSE of the ensemble is higher if it is retained.
Source: ViEWS, 2022
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Table 2. MSE for constituent models and ensembles, test partition, calibrated models

step_pred_1 step_pred_3 step_pred_6 step_pred_12 step_pred_36

fat_baseline_rf 0.312350 0.348635 0.482028 0.762247 0.615954
fat_conflicthistory_srf 0.271888 0.388347 0.397856 0.567990 0.795355
fat_conflicthistory_rf 0.243884 0.309597 0.438257 0.550901 0.619640
fat_conflicthistory_gbm 0.239752 0.346730 0.339781 0.383258 0.646735
fat_conflicthistory_hurdle_rf 0.239677 0.314409 0.334517 0.424023 0.697962
fat_conflicthistory_hurdle_xgb 0.348079 0.391089 0.445749 0.478384 0.781236
fat_conflicthistory_hurdle_lgb 0.253937 0.330650 0.337711 0.398766 0.624152
fat_conflicthistory_histgbm 0.244727 0.323168 0.366490 0.433894 0.723607
fat_conflicthistory_xgb 0.400629 0.648744 0.636688 0.538982 0.757464
fat_conflicthistory_lgb 0.257139 0.315741 0.362989 0.387724 0.708629
fat_conflicthistory_long_rf 0.234813 0.315027 0.355938 0.445409 0.593512
fat_conflicthistory_long_xgb 0.526209 0.716729 0.643766 0.710156 0.794975
fat_vdem_rf 0.297589 0.397761 0.737763 1.862160 0.828352
fat_vdem_xgb 0.518204 0.616339 0.573585 0.597758 1.069021
fat_vdem_hurdle_xgb 0.386985 0.504486 0.585525 0.576335 0.755514
fat_wdi_rf 0.277754 0.355100 0.653053 0.497221 0.656402
fat_wdi_xgb 0.553252 0.670171 0.590272 0.625111 0.840372
fat_wdi_hurdle_xgb 0.422284 0.514358 0.540469 0.503373 0.798807
fat_topics_rf 0.269212 0.377123 0.418048 0.427984 0.638771
fat_topics_histgbm 0.269763 0.365392 0.423085 0.421580 0.667724
fat_topics_xgb 0.269212 0.377123 0.418048 0.427984 0.638771
fat_topics_hurdle_xgb 0.378810 0.508782 0.483442 0.494552 0.705131
fat_prs_rf 0.267412 0.328939 0.430272 0.569960 0.780147
fat_prs_xgb 0.397621 0.513776 0.527073 0.564223 0.767457
fat_prs_hurdle_xgb 0.399098 0.450055 0.504209 0.577334 0.709295
fat_broad_rf 0.238619 0.302460 0.410058 0.579081 0.768517
fat_broad_xgb 0.238619 0.302460 0.410058 0.579081 0.768517
fat_broad_hurdle_xgb 0.346410 0.417060 0.437902 0.481655 0.727715
fat_greatest_hits_rf 0.242592 0.384008 0.523712 0.533727 0.725425
fat_greatest_hits_xgb 0.457396 0.503204 0.568745 0.624928 0.843833
fat_greatest_hits_hurdle_xgb 0.338278 0.467331 0.449010 0.474543 0.758770
fat_greatest_hits_lgb 0.294072 0.390850 0.395873 0.499952 0.673218
fat_hh20_srf 0.304743 0.655106 0.573686 0.771910 0.786554
fat_hh20_rf 0.242222 0.430797 0.982336 0.494854 0.718563
fat_hh20_gbm 0.264341 0.341445 0.382068 0.457804 0.674115
fat_hh20_hurdle_rf 0.245551 0.340191 0.401259 0.470854 0.694925
fat_hh20_hurdle_xgb 0.367649 0.548605 0.530213 0.529297 0.748032
fat_hh20_hurdle_lgb 0.250011 0.374491 0.429056 0.460599 0.650877
fat_hh20_histgbm 0.257422 0.354729 0.419473 0.517115 0.793001
fat_hh20_xgb 0.416823 0.573836 0.587328 0.626272 1.015177
fat_hh20_lgb 0.290986 0.421984 0.499616 0.490089 0.702540
fat_all_pca3_xgb 0.689024 0.743891 0.747092 0.794703 0.970532
fat_all_pca3_lgb 0.313916 0.406369 0.499983 0.599801 0.659584
fat_topics_pca3_xgb 0.835653 0.771567 0.772422 0.955923 1.673361
fat_topics_pca3_lgb 0.341363 0.493407 0.523855 0.676104 1.545612
fat_vdem_pca3_lgb 0.331461 0.429191 0.512842 0.549633 0.769146
fat_wdi_pca3_lgb 0.336640 0.501225 0.577609 0.621943 0.735220
fat_hh20_Markov_glm 0.266196 0.340344 0.440420 0.553014 1.288579
fat_hh20_Markov_rf 0.327788 0.398252 0.442994 0.503946 0.741810
ensemble_unweighted 0.234541 0.297511 0.318613 0.361841 0.547852

Source: ViEWS, 2022
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Figure 17. MSE as function of steps into the future, algorithms, and feature sets

(a) Steps and algorithm (b) Steps and feature sets

Source: ViEWS, 2022

For s = 1 month in to the future, models have mean squared errors just over 1, which corresponds to
missing the true fatality with about a factor of 3. For s = 24, models miss by about 2 units on a log scale,
or about a factor of 8. Again, the topics models perform well, but other models are not far behind.12 The
vdem_short, wdi_broad, and broad_short models also do well. The Markov models are somewhat
weaker than the best-performing models.

6.1.2 Comparing MSEs across algorithms and feature sets

Some feature sets and algorithms perform better than others. Table 18 shows how mean performance
across models and steps vary with algorithms used, feature sets underlying them, and other modeling
characteristics.13 Figure 17 shows the same information in visual form.

This analysis reflects that mean squared error increases as the forecasting horizon is extended, more
precisely by 0.015 per step on average.

The coefficients in Table 18 shows how a given model characteristic change the MSE compared to the
unweighted ensemble model. The results suggest that the hurdle models do considerably better than
the ensemble, and the Markov model construction also clearly improves performance. The PCA models
perform as well as the ordinary models, indicating that they could add something useful to the ensemble
as their predictions are quite distinct from the others.

As for feature sets, models based on the two conflict history sets and the news topics models in general
12In the next stage of this project, we will use boot-strapping techniques to assess the uncertainty of the differences in

MSEs between models.
13The table is the result from estimating an OLS regression using MSEs of models as the dependent variable and the

characteristics as independent ones. Estimated standard errors should not be used for any hypothesis testing, but the
estimated coefficients are good indications of a characteristic’s contribution to relative performance.
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Table 3. MSE for constituent models, only observations with actual non-zeros, test partition,
calibrated models

step_pred_1 step_pred_3 step_pred_6 step_pred_12 step_pred_36

fat_baseline_rf 1.503345 1.524623 2.336305 4.141495 3.085684
fat_conflicthistory_srf 1.343787 2.024064 1.895271 2.821754 3.179284
fat_conflicthistory_rf 1.164621 1.476284 2.116914 2.821917 2.230528
fat_conflicthistory_gbm 1.153559 1.482670 1.343545 1.879099 2.531581
fat_conflicthistory_hurdle_rf 1.159798 1.391232 1.468947 1.683432 2.285727
fat_conflicthistory_hurdle_xgb 1.732104 1.735561 2.109369 2.123059 3.400394
fat_conflicthistory_hurdle_lgb 1.177005 1.534752 1.447181 1.659308 2.496271
fat_conflicthistory_histgbm 1.150633 1.464606 1.450148 1.941896 2.671167
fat_conflicthistory_xgb 2.165823 2.448412 2.322757 2.321712 3.450760
fat_conflicthistory_lgb 1.186864 1.476629 1.453354 1.644653 2.704289
fat_conflicthistory_long_rf 1.121134 1.452637 1.544338 2.036023 2.470182
fat_conflicthistory_long_xgb 1.827653 3.046872 2.823402 2.966699 3.130239
fat_vdem_rf 1.454486 1.972611 3.918311 9.025943 4.116031
fat_vdem_xgb 2.214157 2.457624 2.839655 2.520093 5.256171
fat_vdem_hurdle_xgb 1.725652 2.462229 2.748871 2.235513 3.777703
fat_wdi_rf 1.271859 1.572185 3.101892 2.254350 3.460709
fat_wdi_xgb 2.199253 2.896549 2.948675 3.186534 4.249318
fat_wdi_hurdle_xgb 1.909017 2.369795 2.200511 2.115526 4.145712
fat_topics_rf 1.275998 1.807971 2.079043 1.953468 2.913266
fat_topics_histgbm 1.341753 1.837880 2.209088 2.062236 3.020464
fat_topics_xgb 1.275998 1.807971 2.079043 1.953468 2.913266
fat_topics_hurdle_xgb 1.992092 2.609829 2.480245 2.447909 3.150093
fat_prs_rf 1.200323 1.487704 2.074943 2.901292 3.377009
fat_prs_xgb 2.029237 2.396553 2.446589 2.786389 3.772877
fat_prs_hurdle_xgb 2.046677 2.020685 2.316531 2.415765 3.391370
fat_broad_rf 1.143640 1.402724 1.707521 2.326928 3.166042
fat_broad_xgb 1.143640 1.402724 1.707521 2.326928 3.166042
fat_broad_hurdle_xgb 1.853530 2.070326 1.935385 2.172782 3.525120
fat_greatest_hits_rf 1.182829 1.921499 2.234830 2.206989 3.331416
fat_greatest_hits_xgb 1.986365 2.330007 2.735423 3.065358 3.918275
fat_greatest_hits_hurdle_xgb 1.765032 2.132586 2.172283 2.043721 3.856693
fat_greatest_hits_lgb 1.373099 1.738249 1.645467 2.060743 3.245598
fat_hh20_srf 1.492986 2.156872 2.076605 3.915923 3.604609
fat_hh20_rf 1.162554 2.106171 5.573140 2.394193 3.154381
fat_hh20_gbm 1.155355 1.427249 1.706866 1.874625 2.894999
fat_hh20_hurdle_rf 1.184339 1.593804 1.653093 1.955720 2.888666
fat_hh20_hurdle_xgb 1.679095 2.372503 2.420406 2.357178 3.322519
fat_hh20_hurdle_lgb 1.189455 1.600164 1.833084 2.030360 2.798055
fat_hh20_histgbm 1.246684 1.695281 1.637910 2.095908 3.283830
fat_hh20_xgb 1.910751 2.713801 2.292699 2.806152 4.153993
fat_hh20_lgb 1.287638 1.722793 2.048325 2.037719 2.900494
fat_all_pca3_xgb 2.557523 3.014174 3.622915 3.292943 4.498346
fat_all_pca3_lgb 1.379224 1.955464 2.331547 2.646223 2.938416
fat_topics_pca3_xgb 3.499885 4.482024 3.959814 4.605906 10.443977
fat_topics_pca3_lgb 1.709011 2.515193 2.389118 2.384080 5.502493
fat_vdem_pca3_lgb 1.542693 1.828547 2.090385 2.064645 3.565875
fat_wdi_pca3_lgb 1.523892 2.457583 2.830616 2.570071 3.717958
fat_hh20_Markov_glm 1.192426 1.524279 1.974117 2.451173 5.719302
fat_hh20_Markov_rf 1.236295 1.506650 1.723119 1.926638 3.014789
ensemble_unweighted 1.077267 1.341794 1.344365 1.551380 2.472969

Source: ViEWS, 2022
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Figure 18. How MSE of models vary with algorithms and feature sets, calibration partition.
Ensemble models as reference category.

Source: ViEWS, 2022

perform well.14 Models based on the Varieties of Democracy (vdem) and World Development Indicators
(wdi), on the other hand, do not do that well. Some of the models that make use of the feature sets
combining indicators from these sets do well, however, in particular the broad feature set. The Political
Risk Services features also contribute positively to the mix.

In terms of algorithms, the results suggest that the SciKit gradient boosting model performs very well,
and the XGBoost-based random forest model. The other gradient boosting models are less performant.

6.1.3 Ensembles: Performance and estimated weights

It is clear from Figure 15 that the unweighted ensemble performs better than any of the constituent models,
at all steps. Tables 2 and 3 show that this holds also for the test partition.

14The coefficients in Table 18 for these feature sets are negative or close to zero, i.e. better or comparable to the performance
of the ensembles.
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Figure 19. Weights from the genetic algorithm, cm level

Source: ViEWS, 2022

To define a cm model ensemble that is more practical for production purposes, and that could be weighted
efficiently using the procedure described below, we selected 16 models that all were good performers
according to the metrics showed above, that were maximally diverse (Page, 2007), that included all data
sources ViEWS will be maintaining at least in one model, and excluded data sources that ViEWS will not
be maintaining. The models and the weights they obtain by the genetic weighting procedure are shown
in Figure 19.

Figure 19 shows the weights obtained using the genetic algorithm described above. The genetic algorithm
selected values from a list of discrete values:

[0, 0.001, 0.002, 0.003, 0.005, 0.007, 0.010, 0.015, 0.020, 0.025, 0.030, 0.04, 0.05,

0.06, 0.07, 0.08, 0.09, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20, 0.25]

These values were chosen so that there were more weight options at the lower end of the scale to allow
for low-weight models that pick up on detailed aspects of the prediction problem. The highest weight
allowed was 0.30 – no single model was allowed to account for more than 30% of the predictions to avoid
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over-fitting to the calibration partition.

The algorithm optimized weights for 11 of the 36 steps:

[1,2,4,6,9,12,15,18,24,30,36]

For the remaining steps, we calculated the linear interpolation between the most proximate steps. From
Figure 19, we see that just over half of the 48 models are assigned weights. Since the predictions from
several models are highly correlated, the weighting algorithm in some cases are uncertain what weight to
give each of these. For instance, the two Markov models and the two PRS models take turns in being
important for some step ranges.

Highly weighted models are, as expected, the same as the models that perform well according to MSE
(Figure 15) as well as the ablation score (Figure 16): in particular, two of the conflict history models
obtain weights above 0.20 for several steps, as does one of the topics models for a few steps, and the
random forest Markov model. Except for the Markov models, most highly performant models make use
of relatively sparse, thematic feature sets – in particular conflict history, but also the topics and PRS
feature sets. This is not to say that the other features are ignored, since features from V-Dem and WDI
are important for all cross-thematic feature sets as well as the Markov model.

Tables 2 and 3 show that the weighted ensemble outperforms the equally-weighted ensemble for the test
partition by a wide margin. MSE for s = 1 is 0.233 for the equally weighted ensemble, and 0.227 for
the weighted one. To set this in context, MSE for the best model at s = 1 is 0.235, at par with the
equally-weighted ensemble. At s = 36, MSE for the weighted ensemble is 0.460, as compared to 0.541 for
the equally-weighted one, and 0.593 for the best individual model. It is clear that the ensemble weighting
strategy yields good results, and is more valuable the harder is the prediction problem. Moreover, the
weighted ensemble clearly outperforms also the unweighted ensemble.

6.1.4 Detailed predictions

Figure 20 shows the forecasts for the weighted ensemble model for a selection of countries. The bars shows
the number of fatalities recorded by the UCDP in each month from January 2017 to December 2020, on
a log axis. The lines show predictions for the 36 months starting at the month of the left-hand side . To
visualize how model predictions change over time we include such plots for a number of starting points,
one line for every second month.

The points forming these lines are the predictions for 1,2,3, etc. months ahead given this set of input data
available at that month. The lines are colored so that they gradually change toward yellow as the time
of forecast generation moves forward in time. We include only every second month of forecast generation
in the figures to increase legibility. For instance, the dark red lines starting in January 2017 are based
on data up to and including December 2016 – let us call this the ‘time of forecast generation’. For
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Figure 20. How forecasts change over time, 12-month periods, January 2017–December 2020,
weighted ensemble model forecasts, selected countries

(a) Ensemble predictions: Burkina Faso (left), Mali (middle), Niger (right)

(b) Ensemble predictions: Angola (left), Mozambique (middle), DR Congo (right)

(c) Ensemble predictions: Ethiopia (left), Kenya (middle), South Sudan (right)

(d) Ensemble predictions: Egypt (left), Sudan (middle), Libya (right)

Source: ViEWS, 2022
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instance, for Burkina Faso in the upper left plot, the dark red line show that the model as of December
2016 predicted close to zero fatalities per month in the first months, but increasing to 1–3 deaths every
month by mid-2020, three years into the future (for a view of the UCDP data going into the forecasts,
see https://ucdp.uu.se/country/439). This predicted future trend of increasing risk reflects the fact
that in January 2017, Burkina Faso did not have any preceding state-based violence, but many other risk
factors were present, including some preceding violence (In January 2016, the AQIM killed 25 civilians in
Ouagadougou city). In July 2017 (month 451), the UCDP recorded 8 fatalities. The month after (light
red line), the model predicted more fatalities will follow. As intermittent violence was observed in the
subsequent months, the model adjusts its 36-month forecasts upward. By the end of 2018, the model
predicts about 10 deaths in each of the following months.

Figure 20 shows how the forecasts change over time for a variety of countries. Some of these saw an
escalation of violence from low levels in 2017–2018. Just as in Burkina Faso, Mozambique had been quite
calm up to 2016. Mozambique, however, saw some fighting between the government and RENAMO in
the central part of the country, so the model suggested some deaths from political violence in the first
forecasts in 2017. In November-December 2017, three civilians were killed in by Ansar al-Sunnah in the
Cabo Delgado province, setting off the following conflict with the government of Mozambique. After a
few months of initial violence, the model consistently predict continued violence.

Other countries had established regular fighting before the 2017–2020 we are looking at. In Mali, for
instance, state-based armed conflict had been going on for some years at the end of 2016 (see https:

//ucdp.uu.se/country/432). Seen from December 2016 (dark red line), the model predicts relatively low
levels of violence, since violence had been relatively muted in the three preceding years. As soon as violence
re-escalated from early 2017, the model adjusts forecasts and predicts scores of deaths every month from
mid-2017 onwards. Other countries had more intermittent violence during the 2017–2020 period. Angola,
for instance, saw some flareups of violence in the Cabinda province. Since this conflict had been going on
for a few years but at a very low intensity level, the predictions from early 2017 expected 1–3 deaths per
year, but later reduced the risk assessments.

The model correctly predicted de-escalation in DR Congo. In other countries, e.g. Sudan and South
Sudan, the model predicted continued escalation, and only slowly adjusted predictions during the peaceful
period in 2019 in both countries.

Figure 21 shows the same forecasts for the same countries, but accumulating deaths from January 2017
onwards.

The evaluation of the cm level will be invaluable when we continue to improve our modeling. The random
forest models varying input features provides lots of information about which features are important, and
some lessons regarding the optimal sizes of feature sets for such models. Conflict history is obviously
extremely important, and we will continue to improve how we model this. We have in preparation better
ways to incorporate spatial and temporal lags, for instance.
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Figure 21. Cumulative forecasts over time, 12-month periods, January 2017–December 2020

(a) Ensemble predictions: Burkina Faso (left), Mali (middle), Niger (right)

(b) Ensemble predictions: Angola (left), Mozambique (middle), DR Congo (right)

(c) Ensemble predictions: Ethiopia (left), Kenya (middle), South Sudan (right)

(d) Ensemble predictions: Egypt (left), Sudan (middle), Libya (right)

Source: ViEWS, 2022
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Figure 22. Two dimensional histograms examining the correlation between predicted and
observed outcomes in the test partition for the pgm constituent models

Source: ViEWS, 2022

6.2 pgm level

6.2.1 Constituent models

We begin by comparing the predicted outcomes and observed outcomes in the test partition, which is most
easily done visually by plotting these quantities against each other. The large number of PRIOGRID
cells makes the use of scatter plots for this purpose impractical and we therefore construct images of
two–dimensional histograms, where each block of colour represents a histogram bin and the colour itself
denotes how many units of analysis (datapoints) fall into that bin. A perfect result would result in all the
units of analysis falling into the bins along the diagonal of the plot, which represents (predicted outcome
= observed outcome). Figure 22 shows such a plot for all twelve pgm constituent models. The red dots
indicate the location of the diagonal.

With the exception of the pv_conf_hist model, all the constituent models notably underpredict the
outcomes in the test partition, since most of the filled histogram bins fall below the red line. All models
generate significant numbers of false positives where the observations are zero but the predictions are not
and, to a somewhat lesser extent, all models generate false negatives where the predictions are zero but the
observations are not. These points in principle represent a severe problem for calibration, which in general
involves multiplying data values by normalising factors. The only normalising factor which completely
removes a false positive is zero, and no multiplying factor can repair a false negative. Attempting to
calibrate the constituent models individually is thus unlikely to yield significantly improved results.
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Instead, we will use the principle of ensembling. In an ensemble, the results of constituent models are
added together. This should help to ease the problem of false negatives, since it is unlikely that all twelve
models will yield a false negative in a given cell. In principle, ensembling may help remove false positives
as well, if some models generate negative predictions in cells where others produce false positives. Some
of the constituent models do indeed yield a small number of negative predictions, as shown in Figure 22,
but this is in general undesirable and should not be relied upon to remove false positives.

For reasons that will be discussed below, we have constructed an unweighted ensemble of the pgm con-
stituent models. This raises the possibility that, if there is poor consensus between the models (i.e. if,
for a given cell, only a few models predict non–zero outcomes), ensembling will simply result in washing
out the predictions, yielding predicted outcomes that are everywhere small or zero. In Figure 23, we
show two–dimensional histograms denoting the correlations between all possible pairs of pgm constituent
models.

The consensus between constituent models is indeed generally rather poor, meaning that models in general
do not agree on the outcome in given cells, and the ‘washing out´ discussed above in fact eventuates.

6.2.2 Ensembles

We constructed a simple unweighted ensemble model twelve ten of the constituent pgm models. As with the
constituent models, we construct a 2D histogram in the test partition comparing the outcomes predicted
by the ensemble to the true outcomes, shown in Figure 24.

The outcomes predicted by the ensemble are all extremely low and, at least subjectively, its performance
must be judged extremely poor.

This issue may be alleviated by calibrating the ensemble (as opposed to the constituent models). We
employed the same GAM–based calibration technique used for the cm–level predictions but found that
the improvement was extremely modest, with predicted numbers of fatalities uniformly much lower than
those observed. We find that attempting a GAM fit to the pgm–level data, using the constraint that the
fitted values must increase monotonically, yields a fit function, shown in red in Figure 25 which fails to
match the dynamic range of the predictions to that of the outcomes, so that the calibrated predictions
retain values substantially smaller. The failure of the calibration function to explore the larger values of the
observed outcome is likely due to the large numbers of false positives present in the ensemble predictions,
which drag the fit function down to lower values. The fit function is then attempting to fulfil two mutually
contradictory tasks: suppressing the values of the false positives towards zero, and inflating the values
of the true positives towards the desired higher values. The result is then a compromise which achieves
neither task particularly well.

The performance of the GAM–calibrated ensemble model, shown in Figure 26, is substantially better
than that of the uncalibrated ensemble, but the GAM–calibrated model still notably underpredicts the
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Figure 23. Two dimensional histograms examining the correlation between predicted outcomes
in the test partition for all pairs of pgm constituent models

Source: ViEWS, 2022
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Figure 24. Two dimensional histogram examining the performance of the uncalibrated,
unweighted pgm ensemble model.

Source: ViEWS, 2022
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Figure 25. Two dimensional histogram examining showing the observations plotted against the
pgm ensemble predictions in the calibration partition as a histogram with the result fit shown
in red

Source: ViEWS, 2022

outcomes, as a result of the inability of the GAM–generated calibration function to access the larger
values of the observed outcome. The MSE values derived from the GAM-calibrated predictions were in
fact slightly worse than those from the uncalibrated predictions (Fig 28).

At present, the constituent models and ensembles we have constructed at the pgm level are apparently
not able, of themselves, to provide a solution to the normalisation problem. We therefore elected to
employ a different calibration method, using the cm-level predictions as a baseline. The method is very
straightforward: for a given month, for a given country, we identify the group of PRIOGRID cells belonging
to that country at that time, sum their predicted fatalities, and then multiply those fatalities by the ratio
of the predicted fatalities at the cm–level to the sum. This ensures that the predicted fatalities at pgm–
level per country, and the predicted fatalities at cm–level are the same. We justify this technique on the
grounds that, since countries are generally much larger geographical units than individual PRIOGRID
cells, country–level predictions are by definition more reliable.
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Figure 26. Two dimensional histogram examining the performance of the GAM–calibrated,
unweighted pgm ensemble model

Source: ViEWS, 2022
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Figure 27. Two dimensional histogram examining the performance of the cm–calibrated,
unweighted pgm ensemble model

Source: ViEWS, 2022

The process effectively turns the pgm-level predictions into a two-stage process, where the regression anal-
ysis at the PRIO-GRID level is used to predict in which cells fatalities will occur and the relative numbers
of fatalities between cells, while independent predictions at the country level are used to renormalize these
relative numbers of fatalities, yielding absolute numbers which agree across the two levels of analysis (as
they should, in any case). Figure 27 shows the result of applying this procedure to the unweighted pgm
ensemble, using the weighted cm ensemble as a calibrator.

The cm–calibrated ensemble appears to be superior to the GAM–calibrated model, at least in the sense
that the observations and predictions have very similar dynamic ranges. However, as expected, there is
still clearly an issue with false positives, which this calibration scheme cannot remedy.

The evaluations of the constituent and ensemble models discussed thus far, based on visual examination of
two–dimensional histograms are arguably somewhat subjective and certainly not quantitative. In Figure
28, we show the log of the MSE in the logged dependent variable for all 36 steps for all twelve constituent
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Figure 28. MSE scores for twelve constituent pgm models (top 12 rows) and four unweighted
ensembles derived from these models (bottom fours rows), for steps 1–36.

Note: From top to bottom, the ensembles are uncalibrated; GAM–calibrated; GAM–calibrated imposing the
monotonic constraint; calibrated using the country–month ensemble, so that the total fatalities in the pg cells
belonging to a given country–month are equal to the predicted fatalities for that country–month from the cm–level
ensemble.
Source: ViEWS, 2022

models, the uncalibrated ensemble, the GAM–calibrated model discussed above, a second GAM–calibrated
model in which the constraint that the fit function be monotonically–increasing is dropped (which yields
a very similar model), and the cm–calibrated model.

It is noteworthy that, of the four ensembles, the uncalibrated one is objectively the worst, but has (by a
slim margin) the best MSE scores. Additionally, the predictions resulting from the hybrid cm calibration
procedure, while evidently yielding much more plausible numbers of fatalities than the either the uncal-
ibrated or GAM–calibrated predictions, yield MSE scores which are substantially worse. The reason for
this apparent discrepancy appears to be quite straightforward. Observed fatalities in a given month at pg–
level generally consist of a rather small number of discrete (i.e. very geographically restricted) events with
strongly varying levels of severity, surrounded by non–events (i.e. cells with no fatalities in that month).
By contrast, the predicted fatalities for a given month tend to be much more smoothly distributed in
space, predicting non–zero fatalities in many cells where the observed values are zero, as well as (in most
cases) correctly predicting fatalities where they are indeed observed.

Under these circumstances, two things are likely to be true: (i) the normalisation of the total numbers of
predicted fatalities is likely to be too low, requiring calibration to generate plausible numbers of deaths
(as detailed above); (ii) the increases in predicted fatalities resulting from renormalising/recalibrating will
mainly occur in cells where the observed fatalities are zero. This in turn almost guarantees that a better–
calibrated model will have a worse MSE score. MSE scores, at least used in the standard fashion, are thus
of no help in ranking such models, and may in fact lead one to discard a better model in favour of a worse
one.
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7 Conclusions

We have presented an initial set of conflict fatality forecasting models and explored their ability to predict
the outcome – monthly counts of the number of direct battle-related deaths in state-based armed conflict.
At the same time, we have presented a number of tools to evaluate the forecasts and inspect the predictions.
We have also developed methods to calibrate and aggregate predictions from constituent models that work
well.
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A-1 APPENDIX

A-1.1 Model selection plots

Figure A-1. MSEs calibration partition, zero observations (left), non-zeros (right)

Source: ViEWS, 2022
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Figure A-2. Correlation between predictions, calibration partition

Source: ViEWS, 2022
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A-1.2 Figures and descriptives for the outcomes, including non-state and one-sided
violence

Figure A-3. Probability of conflict given that the number of fatalities is greater than 0 at t_1
for 1990–2020, 2015–2017 and 2018–2020

(a) 1990-2020 (b) 2015-2017

(c) 2018-2020

Source: ViEWS, 2022
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A-1.2.1 Descriptive tables, cm level

Table A-1. Summary statistics, cm level for 1990-2020

Conflict type Proportions of zeros Mean Standard Deviation Mean (logged) Standard Deviation (logged)

State based conflict 0.875366 21.622541 333.093440 3.118947 5.811421
Non-state conflict 0.908392 12.229980 1667.839386 1.563573 7.419884
One sided conflict 0.953048 3.775856 53.268666 2.582485 3.993947

Table A-2. Summary statistics, cm level for 1990-2020

Conflict type Proportions of zeros Mean Standard Deviation Mean (logged) Standard Deviation (logged)

State based conflict 0.849913 22.728185 192.048178 3.166664 5.262940
Non-state conflict 0.882781 10.124636 114.810763 2.409162 3.113305
One sided conflict 0.932519 2.697789 21.495275 1.307735 4.751958
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