
Rules as Code in Canada
Summary of Experiments and Lessons Learned

Public Sector Experimentation Team (PSX)

February 2024

What is Rules as Code (RaC)?

Rules as Code (RaC) is an innovative approach to rulemaking that encourages governments to create a

trustworthy interpretation of rules in a machine-consumable form. When rules are encoded in a clear,

accessible, consistent manner, and made publicly available, they can be used to power legal automation,

simulation, and verification tools. This could significantly enhance public service delivery while

simultaneously providing more transparency on government decision-making.

First Canadian Experiments (2019-2022)

The Canada School of Public Service (CSPS) has been experimenting with RaC tools and approaches

since 2019. Like many other experimenters in this space, our first projects focused on converting existing

regulations into code using the microsimulation tool OpenFisca. We selected rules that were descriptive,

interconnected, expansive, and subject to relatively frequent change (as opposed to rules that are

subjective, self-contained, circumscribed, and static) and assembled a multidisciplinary team of experts to

help transcribe their meaning.

2

3

Discoveries

These initial projects supported our hypothesis that writing laws in computer languages could significantly

enhance public service delivery. For example, writing rules into code helped reveal gaps, loopholes, and

ambiguities that may go unnoticed when reading and writing the natural language on its own. If these rules

were shared publicly via API (Application Programming Interface), it could help others implement them in a

more streamlined, comprehensive, and consistent manner. In short, encoded rules make legal automation,

simulation, and verification possible.

Lessons Learned

However, we also identified some major obstacles that made the process long, arduous, and unsustainable.

For example, deciphering the meaning of existing rules to convert them into code was difficult. Furthermore,

the interdisciplinary nature of the workgroup (e.g. drafters, subject matter experts, coders) presented

communication challenges. Finally, it was very difficult to capture the whole meaning of a law using imperative

programming languages like OpenFisca; this forced the programmers to make difficult decisions on whether to

encode less than the whole rule, or to do a lot more work to capture its whole meaning.

4

Summary

Our first experiments convinced us that rules should probably be encoded by the rule-makers (those who know

them best) as they are being created. However, most RaC tools are designed for programmers; they aren't

easily accessible for legal and policy professionals who rarely have backgrounds in the computer sciences.

The federal public service has a unique combination of technical, judicial, and subject matter expertise to fill

this user-developer gap. As such, we have set out on a mission to leverage this network towards building open-

source and user-friendly RaC tools designed for rule-makers.

This has led us to the following two innovations:

1. A user-friendly RaC tool called Blawx ; and

2. A rule-drafting methodology that incorporates code.

Innovation 1 | Blawx

5

6

Blawx

Our first innovation – Blawx – is an open-source and user-friendly programming tool designed specifically

to help non-programmers encode, test, and use rules. Blawx is powered by a predicate declarative logic

software called s(CASP) and overlayed with a visual programming interface (Blockly). It has a user-friendly

simulation interface, provides detailed explanations for answers, and can execute hypothetical reasoning

tasks. We are developing Blawx in collaboration with Canadian public service professionals, so that it can

help fill the developer-user gap we have identified in the RaC space.

7

Demo | The Rock Paper Scissors Act

8

Demo | The Canadian Navigable Waters Act

9

Demo | Blawx API (Application Programming Interface)

Innovation 2 | Code-Assisted Regulatory Drafting

10

PSSA 3(1) – Definition of Salary Regulation

Our second innovation – a rule-drafting methodology – was developed in collaboration with the Treasury

Board of Canada Secretariat (TBS). TBS wanted to apply a RaC approach to help draft a “Definition of

Salary” regulation that clearly outlines and integrates desired policy outcomes under s.3(1) of the Public

Service Superannuation Act. This was an excellent case study for RaC, as these rules were complicated,

and applied to different collective agreements and payment codes.

11

Writing Drafting Instructions in Code

In the first stage of this experiment, we used RaC to test whether a regulation was the proper policy tool to

meet the desired outcomes for TBS. Using our Blawx prototype, we co-drafted the policy proposal into

code and tested it with subject matter experts. By making the proposed rules machine-consumable, we

could run them through a series of fact scenarios and use our findings to guide the policy work. Overall,

this exercise helped us better prepare drafting instructions.

12

Project Dashboard: Provides the user access

to all the relevant tools for encoding and testing a

set of rules.

Code Editor: Convey the meaning of each

section of law into code using Blawx's drag-and-

drop block interface

Test Questions: Once rules have been encoded,

craft a question. This question will be used in the

Scenario Editor to test the code.

Scenario Editor: Simulate various legal scenarios

by providing a set of facts to the test question.

Test Answers: If the question can be answered

based on the facts provided, you will receive all

relevant answers and explanations.

Explanations: Each answer includes a detailed

breakdown of the legal reasoning for the rule-

makers to vet.

Results, Outcomes & Impacts

By running simulations with our code, we were able to analyze the rules in a more informative and

cohesive way than we would have been able to by relying solely on the natural language versions of the

law. It also helped us identify elements that needed correction in the Blawx software. The rule encodings

can now be reused in the drafting room to help the subject matter experts communicate with the legal

drafters responsible for writing the regulations.

Next Steps

We have completed the policy exercise phase, and our next step is the regulatory drafting phase, where

we will test the encodings alongside legal drafters. We believe the time we spent writing out the rules into

code during the policy phase will help parties more efficiently and effectively develop comprehensive and

clear rules in the drafting room. Furthermore, the encodings could be repurposed by future rule-makers

when amendments are made at a later date.

While the initial rule encodings for this project were drafted by a lawyer-turned-developer, the latest

regulatory text proposals were encoded by a pensions subject matter expert from the TBS. We are also

exploring the possibility of supporting a regulatory drafter with how to respond to the proposed drafting

instructions in code, using Blawx.
19

Key Considerations

20

Legal Status of the Encodings

Once the rules and their associated encodings have been finalized, we will investigate the feasibility of

publishing our rule encodings for consultation in the Canada Gazette. However, it is important to note that

the encodings should not be viewed as having equal legal status to the official rules. Rather, they are

trustworthy interpretations of rules that can help communicate their meaning to citizens and stakeholders,

as governments strive to improve service delivery.

Collaboration with Justice

We hypothesize that encoded rules can help those who implement (or are subject to) those rules more

effectively conduct administration, evaluation, and compliance activities. We have started working with

Justice’s the LSB AI & RaC Workgroup to bring legislative expertise to our RaC work, and to mitigate legal

risks associated with this practice. We are also exploring questions pertaining to cabinet confidences,

solicitor-client privilege, and ways to improve Blawx so that it better serves the needs of legal drafters.

21

Conditions for Success

If you would like to use existing RaC tools within your organization, it is important to first identify the rules

you would like to write into code, and then assemble a multidisciplinary team of professionals with skillsets

in the areas of legislative drafting, symbolic AI, and generative AI. It is highly recommended that you get

support from leadership in your organization so you can get the required resources for your RaC project.

Invest your time in building the right pitch and presenting it to the right people.

Replication

Rules as Code is a relatively new practice, but there are experiments being conducted in this space

around the world. However, what makes this case study unique is that we are using a RaC approach to

craft new rules, not just converting existing ones. As with all RaC projects, the encodings are designed to

be repurposed and reused in the future, making replication easy.

22

Notable Accomplishments

To our knowledge, this project marks the first time where:

1. Rules as Code has been used by Canada (or in Canada) to support legal/policy decision-making;

2. Answer set programming (ASP) is used for legal/policy decisions;

3. The code was written primarily by a non-programmer;

4. The code was deployed to answer the question "should a regulation be written for X"; and

5. The code is used in a real-world legislative task.

Key Lessons Learned

1. Encoded rules make legal automation, simulation, and verification possible.

2. Writing rules into code as they are being developed helps reveal gaps, loopholes, and ambiguities

that may otherwise go unnoticed when reading and writing the natural language on its own.

3. Encoded rules are more trustworthy if they are written by the rule-makers, using tools that improve

communication between participants.

4. Rules as Code can be conducted by non-programmers, but work is still needed to promote its

benefits and make it more appealing to this audience.
23

Ongoing Projects & Developments

24

PROJECT | NRCan Canmet Mining MAP Tool

We are currently conducting a RaC experiment with Natural Resources Canada, where rules pertaining to

the mining permit process are being converted into code. The Mining Application Permitting Tool (MAP

Tool) intends to automate a set of complex legal processes by isolating rule encodings from the user

interface that displays them. These rule encodings can then be linked to NRCan’s website by the

IT/Developer team. If the law changes, the new legal data can be easily integrated into NRCan’s website

without making major reconfigurations to the user interface.

25

26

Analyzing Multiple Laws At Once

27

Combining Symbolic AI with Generative AI | Provide Plain Language Summaries

28

Combining Symbolic AI with Generative AI | Prompt Users for Information

29

Combining Symbolic AI with Generative AI | Autogenerate Code

	Slide 1: Rules as Code in Canada Summary of Experiments and Lessons Learned
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Innovation 1 | Blawx
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Innovation 2 | Code-Assisted Regulatory Drafting
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Key Considerations
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Ongoing Projects & Developments
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

